Skip to main content

Computing Hardware

The CRC provides different hardware types to target different computing use cases. These hardware profiles are grouped together under a common cluster name and are further divided into partitions to highlight differences in the architecture or usage modes.

Cluster Acronym Full Form of Acronym Description of Use Cases
mpi Message Passing Interface For tightly coupled parallel codes that use the Message Passing Interface APIs for distributing computation across multiple nodes, each with its own memory space
htc High Throughput Computing For genomics and other health sciences-related workflows that can run on a single node
smp Shared Memory Processing For jobs that can run on a single node where the CPU cores share a common memory space
gpu Graphics Processing Unit For AI/ML applications and physics-based simulation codes that had been written to take advantage of accelerated computing on GPU cores

 

 

Below, you will find the hardware specifications for each cluster and the partitions that compose it as well as the VIZ and Login nodes as listed in our user manual.


GPU Cluster Overview

The GPU cluster is optimized for computational tasks requiring GPU acceleration, such as artificial intelligence and machine learning workflows, molecular dynamics simulations, and large-scale data analysis.

Key Features

  • Designed for high-performance GPU workloads.
  • Supports CUDA, TensorFlow, PyTorch, and other GPU-accelerated frameworks.

Specifications

Partition Name Node Count GPU Type GPU/Node --constraint Host Architecture Core/Node Max Core/GPU Mem/Node Mem/Core Scratch Network Node Names
l40s 20 L40S 48GB 4 l40s,48g,intel Intel Xeon Platinum 8462Y+ 64 16 512 GB 8 GB 7 TB NVMe 10GbE gpu-n[55-74]
                         
a100 10 A100 40GB PCIe 4 a100,40g,amd AMD EPYC 7742 (Rome) 64 16 512 GB 8 GB 2 TB NVMe HDR200; 10GbE gpu-n[35-44]
  2 A100 40GB PCIe 4 a100,40g,intel Intel Xeon Gold 5220R (Cascade Lake) 48 12 384 GB 8 GB 1 TB NVMe 10GbE gpu-n[33-34]
                         
a100_multi 10 A100 40GB PCIe 4 a100,40g,amd AMD EPYC 7742 (Rome) 64 16 512 GB 8 GB 2 TB NVMe HDR200; 10GbE gpu-n[45-54]
                         
a100_nvlink 2 A100 80GB SXM 8 a100,80g,amd AMD EPYC 7742 (Rome) 128 16 1 TB 8 GB 2 TB NVMe HDR200; 10GbE gpu-n[31-32]
  3 A100 40GB SXM 8 a100,40g,amd AMD EPYC 7742 (Rome) 128 16 1 TB 8 GB 12 TB NVMe HDR200; 10GbE gpu-n[28-30]

HTC Cluster Overview

The HTC Cluster is designed to handle data-intensive health sciences workflows (genomics, neuroimaging, etc.) processing that can run on a single node.

Key Features

  • Dedicated Open OnDemand web portal instance

Specifications

Partition Host Architecture --constraint Nodes Cores/Node Mem/Node Mem/Core Scratch Network Node Names
htc AMD EPYC 9374F (Genoa) amd, genoa 20 64 768 GB 12 GB 3.2 TB NVMe 10GbE htc-n[50-69]
  Intel Xeon Platinum 8352Y (Ice Lake) intel, ice_lake 18 64 512 GB 8 GB 2 TB NVMe 10GbE htc-n[32-49]
  Intel Xeon Platinum 8352Y (Ice Lake) intel, ice_lake 4 64 1 TB 16 GB 2 TB NVMe 10GbE htc-1024-n[0-3]
  Intel Xeon Gold 6248R (Cascade Lake) intel, cascade_lake 8 48 768 GB 16 GB 960 GB SSD 10GbE htc-n[24-31]

MPI Cluster Overview

The MPI cluster enables jobs with tightly coupled parallel codes using Message Passing Interface APIs for distributing computation across multiple nodes, each with its own memory space.

Key Features

  • Infiniband and Omni-Path networking
  • Minimum of 2 Nodes per Job

Specifications

Partition Host Architecture Nodes Cores/Node Mem/Node Mem/Core Scratch Network Node Names
mpi Intel Xeon Gold 6342 (Ice Lake) 136 48 512 GB 10.6 GB 1.6 TB NVMe HDR200; 10GbE mpi-n[0-135]
                 
opa-high-mem Intel Xeon Gold 6132 (Skylake) 36 28 192 GB 6.8 GB 500 TB SSD OPA; 10GbE opa-n[96-131]

SMP Cluster Overview

The SMP nodes are appropriate for programs that are parallelized using the shared memory framework. These nodes are similar to your laptop but with more CPU cores and shared memory space between them.

Key Features

  • high memory partition for nodes with up to 3 TB of shared memory

Specifications

Partition Host Architecture --constraint Nodes Cores/Node Mem/Node Mem/Core Scratch Network Node Names
smp AMD EPYC 9374F (Genoa) amd, genoa 43 64 768 GB 12 GB 3.2 TB NVMe 10GbE smp-n[214-256]
  AMD EPYC 7302 (Rome) amd, rome 55 32 256 GB 8 GB 1 TB SSD 10GbE smp-n[156-210]
                   
high-mem Intel Xeon Platinum 8352Y (Ice Lake) intel, ice_lake 8 64 1 TB 16 GB 10 TB NVMe 10GbE smp-1024-n[1-8]
  Intel Xeon Platinum 8352Y (Ice Lake) intel, ice_lake 2 64 2 TB 32 GB 10 TB NVMe 10GbE smp-2048-n[0-1]
  AMD EPYC 7351 (Naples) amd, naples 1 32 1 TB 32 GB 1 TB NVMe 10GbE smp-1024-n0
  Intel Xeon E7-8870v4 (Broadwell) intel, broadwell 4 80 3 TB 38 GB 5 TB SSD 10GbE smp-3072-n[0-3]

TEACH Overview

The TEACH cluster make a subset of hardware on the CRCD system available for students and teachers to develop computational workflows around course materials without competing with research-oriented jobs.

Key Features

  • Consists of both CPU and GPU hardware

Specifications

Resource Type Node Count CPU Architecture Core/Node CPU Memory (GB) GPU Card No. GPU GPU Memory (GB)
CPU 54 Gold 6126 Skylake 12C 2.6GHz 24 192 N/A N/A N/A
               
GPU 1 7 E5-2620v3 Haswell 6C 2.4GHz 12 128 NVIDIA Titan X 4 12
               
GPU 2 6 E5-2620v3 Haswell 6C 2.5GHz 12 128 NVIDIA GTX 1080 4 8
               
GPU 3 10 Xeon 4112 Skylake 4C 2.6GHz 8 96 NVIDIA GTX 1080 Ti 4 11
               
GPU 4 2 Xeon Platinum 8502+ 1.9GHz 128 512 NVIDIA L4 8 24

Login Nodes Overview

The Login Nodes provide access to a Linux Commandline interface on the CRCD system via Secure SHell protocol (ssh).

Key Features

  • Load balancing between login nodes to better address usage demands
  • Cgroup-based management of system resources

Specifications

hostname backend hostname Architecture Cores/Node Mem Mem/Core OS Drive Network
h2p.crc.pitt.edu login0.crc.pitt.edu Intel Xeon Gold 6326 (Ice Lake) 32 256 GB 8 GB 2x 480 GB NVMe (RAID 1) 25GbE
  login1.crc.pitt.edu Intel Xeon Gold 6326 (Ice Lake) 32 256 GB 8 GB 2x 480 GB NVMe (RAID 1) 25GbE
htc.crc.pitt.edu login3.crc.pitt.edu Intel Xeon Gold 6326 (Ice Lake) 32 256 GB 8 GB 2x 480 GB NVMe (RAID 1) 25GbE

VIZ Overview

The VIZ Login Nodes enable access to an in-browser Linux Desktop environment on the CRCD system.

Key Features

  • Load balancing between login nodes to better address usage demands
  • Cgroup-based management of system resources

Specifications

Web URL backend hostname GPU Type # GPUs Host Architecture Cores Mem Mem/Core Scratch Network
https://viz.crc.pitt.edu viz-n0.crc.pitt.edu GTX 1080 8GB 2 Intel Xeon E5-2680v4 (Broadwell) 28 256 GB 9.1 GB 1.6 TB SSD 10GbE
  viz-n1.crc.pitt.edu RTX 2080 Ti 11GB 2 Intel Xeon Gold 6226 (Cascade Lake) 24 192 GB 8 GB 1.9 TB SSD 10GbE