Quick Summary
Center for Research Computing
University of Pittsburgh

Access
- Request an Account
 http://core.sam.pitt.edu/apply
- Login
 HTC htc.sam.pitt.edu
 SMP/OPA/NTA h2p.crc.pitt.edu
- Storage
 ihome (75G per user) /ihome
 mobydisk (2T per group) /mnt/mobydisk
 ZFS (5T per group) /zfs1 & /zfs2
 • your home directory on each of these storage systems is under your primary group name directory. It is backed up.
 • Use the id command to find your primary group.
 • Both mobydisk and ZFS are not backed up.
 • To get ZFS storage space open a help ticket.

Common Commands
- Connect
 ssh h2p.crc.pitt.edu #connect to the SMP, OPA and GPU clusters
 ssh htc.sam.pitt.edu #connect to the HTC cluster
- Data
 scp afile.tgz htc.sam.pitt.edu:~/ #copy from local computer to SMP cluster
 scp htcmob.smp.pitt.edu:/afile.tgz . #copy from htc to local computer
 rsync -aP $HOME/arc /zfs1/1/sam/ketan #copy src to zfs using rsync
 df -h /zfs1/2/kjordan/ #find quota of a group's ZFS storage
 lfs quota -g jpipas /mnt/mobydisk #find quota of a group’s mobydisk storage
- LMod: load and unload software
 module spider fftw #search for module named fftw
 module avail #list available modules
 module list #list currently loaded modules
 module load compiler/python/2.7.10-Anaconda-2.3.0 #load anaconda module
 module purge #unload all modules

Hardware
- SMP Standard 10 GIGE NETWORK
 • 100 nodes of 24-core Xeon Gold 6126 2.60 GHz (Skylake), 192 G RAM, 256 G & 500 G SSD
 • 24 nodes of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 256 G RAM, 256 G SSD & 1 T SSD
- SMP Specialty
 • 2 nodes of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 256 G RAM, 256 G SSD & 3 T SSD, 10 GigE
 • 2 nodes of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 512 G RAM, 256 G SSD & 3 T SSD, FDR-IB
 • 1 node of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 256 G RAM, 256 G SSD & 6 T NVMe, GigE
- OMNI-PATH NETWORK
 • 96 nodes of 28-core Intel Xeon E5-2690 2.60 GHz (Broadwell), 64 G RAM, 256 G SSD, 100 Gb
- INFINIBAND NETWORK
 • (IB) 32 nodes of 20-core Haswell (E5-2660 v3), 2.6 GHz (Haswell), 128 G RAM, 256 G SSD
- HTC INFINIBAND NETWORK
 • 4 nodes of 24-core Xeon Gold 6126 2.60 GHz (Skylake) 384 G RAM, 256 G & 500 G SSD
 • 20 nodes of 16-core Intel Xeon E5-2630v3, 2.4GHz (Haswell-EP), 256 G RAM, 256 G SSD
- NTA
 • 8 nodes of 256-core (hyper-threaded) Intel KNL Xeon Phi 7210 1.30 GHz, 94 G RAM
 • 7 nodes with 4 NVIDIA Titan X GPGPUs/node
 • 8 nodes with 4 NVIDIA GeForce GTX 1080 GPGPUs/node
 • 1 node with 2 NVIDIA K40 GPGPUs

Help
Does the FAQ answer your question?
http://core.sam.pitt.edu/faqs
Search the website:
http://core.sam.pitt.edu/search
Read the documentation
http://core.sam.pitt.edu/node/6
- When submitting support ticket
 1. Provide a descriptive, specific title
 2. Specify the cluster the ticket applies to
 3. Provide directory location if applicable

- CRC Consultants and their Expertise
 Kim Wong: Bio Simulation | Agent-based Modeling | Physics-based Modeling
 Fangping Mu: Bioinformatics | Computational Biology | Computational Genomics
 Barry Moore: Quantum Chemistry | HPC
 Ketan Maheshwari: GPU Computing | Scientific Workflows
 Sherwin Sammak: Turbulent Combustion | Fluid Dynamics

- Contact / Feedback
 Please send your feedback and suggestions for improvement to this document at
 http://core.sam.pitt.edu/contact

Job Scheduler Policy
Details coming soon.
- Charging
 Users are charged in terms of Service Units (SU) which depend on both memory and CPU usage.
- Queues and limits
 - Minimum and maximum walltimes
 - Minimum and maximum nodes that may be requested

Software
- Applications
 • Chemistry: NAMD®, casino, lammps, Amber®, Molpro®, Turbomole®, CP2K®, Gaussian®
 • Bio: CLCbio®, galaxy®, bowtie®, samtools®, picard®, trinity®
 • Material Sci: Material Studio, Westpa, abaqus, VASP®
- Libraries and Programming
 • Compilers: GCC®, Python®️, Perl®, R®, Matlab
 • Libraries: Boost®, FFT®, tensorflow®, mkl®, hdf5®, biocoordinator®️
- Others
 • Editors: vim®, emacs®, nano®, gedit®,
 • Debuggers: gdb®, gprof®,
 • Shells: bash®, zsh®️

Quick Summary
Center for Research Computing
University of Pittsburgh

Access
- Request an Account
 http://core.sam.pitt.edu/apply
- Login
 HTC htc.sam.pitt.edu
 SMP/OPA/NTA h2p.crc.pitt.edu
- Storage
 ihome (75G per user) /ihome
 mobydisk (2T per group) /mnt/mobydisk
 ZFS (5T per group) /zfs1 & /zfs2
 • your home directory on each of these storage systems is under your primary group name directory. It is backed up.
 • Use the id command to find your primary group.
 • Both mobydisk and ZFS are not backed up.
 • To get ZFS storage space open a help ticket.

Common Commands
- Connect
 ssh h2p.crc.pitt.edu #connect to the SMP, OPA and GPU clusters
 ssh htc.sam.pitt.edu #connect to the HTC cluster
- Data
 scp afile.tgz htc.sam.pitt.edu:~/ #copy from local computer to SMP cluster
 scp htcmob.smp.pitt.edu:/afile.tgz . #copy from htc to local computer
 rsync -aP $HOME/arc /zfs1/1/sam/ketan #copy src to zfs using rsync
 df -h /zfs1/2/kjordan/ #find quota of a group's ZFS storage
 lfs quota -g jpipas /mnt/mobydisk #find quota of a group’s mobydisk storage
- LMod: load and unload software
 module spider fftw #search for module named fftw
 module avail #list available modules
 module list #list currently loaded modules
 module load compiler/python/2.7.10-Anaconda-2.3.0 #load anaconda module
 module purge #unload all modules

Hardware
- SMP Standard 10 GIGE NETWORK
 • 100 nodes of 24-core Xeon Gold 6126 2.60 GHz (Skylake), 192 G RAM, 256 G & 500 G SSD
 • 24 nodes of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 256 G RAM, 256 G SSD & 1 T SSD
- SMP Specialty
 • 2 nodes of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 256 G RAM, 256 G SSD & 3 T SSD, 10 GigE
 • 2 nodes of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 512 G RAM, 256 G SSD & 3 T SSD, FDR-IB
 • 1 node of 12-core Xeon E5-2643v4 3.40 GHz (Broadwell), 256 G RAM, 256 G SSD & 6 T NVMe, GigE
- OMNI-PATH NETWORK
 • 96 nodes of 28-core Intel Xeon E5-2690 2.60 GHz (Broadwell), 64 G RAM, 256 G SSD, 100 Gb
- INFINIBAND NETWORK
 • (IB) 32 nodes of 20-core Haswell (E5-2660 v3), 2.6 GHz (Haswell), 128 G RAM, 256 G SSD
- HTC INFINIBAND NETWORK
 • 4 nodes of 24-core Xeon Gold 6126 2.60 GHz (Skylake) 384 G RAM, 256 G & 500 G SSD
 • 20 nodes of 16-core Intel Xeon E5-2630v3, 2.4GHz (Haswell-EP), 256 G RAM, 256 G SSD
- NTA
 • 8 nodes of 256-core (hyper-threaded) Intel KNL Xeon Phi 7210 1.30 GHz, 94 G RAM
 • 7 nodes with 4 NVIDIA Titan X GPGPUs/node
 • 8 nodes with 4 NVIDIA GeForce GTX 1080 GPGPUs/node
 • 1 node with 2 NVIDIA K40 GPGPUs

Help
Does the FAQ answer your question?
http://core.sam.pitt.edu/faqs
Search the website:
http://core.sam.pitt.edu/search
Read the documentation
http://core.sam.pitt.edu/node/6
- When submitting support ticket
 1. Provide a descriptive, specific title
 2. Specify the cluster the ticket applies to
 3. Provide directory location if applicable

- CRC Consultants and their Expertise
 Kim Wong: Bio Simulation | Agent-based Modeling | Physics-based Modeling
 Fangping Mu: Bioinformatics | Computational Biology | Computational Genomics
 Barry Moore: Quantum Chemistry | HPC
 Ketan Maheshwari: GPU Computing | Scientific Workflows
 Sherwin Sammak: Turbulent Combustion | Fluid Dynamics

- Contact / Feedback
 Please send your feedback and suggestions for improvement to this document at
 http://core.sam.pitt.edu/contact

Job Scheduler Policy
Details coming soon.
- Charging
 Users are charged in terms of Service Units (SU) which depend on both memory and CPU usage.
- Queues and limits
 - Minimum and maximum walltimes
 - Minimum and maximum nodes that may be requested

Software
- Applications
 • Chemistry: NAMD®, casino, lammps, Amber®, Molpro®, Turbomole®, CP2K®, Gaussian®
 • Bio: CLCbio®, galaxy®, bowtie®, samtools®, picard®, trinity®
 • Material Sci: Material Studio, Westpa, abaqus, VASP®
- Libraries and Programming
 • Compilers: GCC®, Python®, Perl®, R®, Matlab
 • Libraries: Boost®, FFT®, tensorflow®, mkl®, hdf5®, biocoordinator®️
- Others
 • Editors: vim®, emacs®, nano®, gedit®,
 • Debuggers: gdb®, gprof®,
 • Shells: bash®, zsh®️
Quick Summary

Center for Research Computing University of Pittsburgh

Computation

CRC clusters use the SLURM scheduler.

- **Job Management**
 - `sinfo` #view info about nodes
 - `sbatch` job #submit a job
 - `squeue` #check job status
 - `scancel` job id #cancel job with id

Below is the command to see details of the nodes on a particular cluster. The key column is the CPUS(A/I/O/T) where, A = allocated, I = idle, O = other, T = total

Single-core jobs should fit within nodes with non-zero I.

- **Note:** The above commands will show info about the SMP cluster by default. To see info about other clusters, use the --cluster option with name of cluster, eg. `squeue --cluster=hpc`

- **example**
 - `h2p.crc.pitt.edu`

- **Example SLURM Scripts**

- for HTC

```bash
#!/bin/bash
#SBATCH --job-name=testR
#SBATCH --nodes=2
#SBATCH --ntasks=1
#SBATCH --time=00:10:00
#SBATCH --output=gputf.std.out
#SBATCH --reservation=sam_4
#SBATCH --qos=long # required if walltime is greater than 3 days
#SBATCH --mail-type=END,FAIL # ... job ends or fails
#SBATCH --mail-user=shs159@pitt.edu #send email to this address if ...
#SBATCH --cluster=mpi # cluster name is required
#SBATCH --partition=opa # partition name is required
#SBATCH --ntasks-per-node=1
#SBATCH --nodes=2 #number of nodes requested
#!/bin/bash
export I_MPI_FABRICS_LIST=tmi:I_MPI_FALLBACK=0
```

- for SMP/MI/P/OPA

```bash
#!/bin/bash
#SBATCH --job-name=testR
#SBATCH --nodes=2
#SBATCH --ntasks=1
#SBATCH --time=00:10:00
#SBATCH --output=test.out
#SBATCH --job-name=testR #name of job: will show up in status output of
#SBATCH -t 00:10:00 # 10 minutes walltime in HH:MM:SS format
#SBATCH --error=test.err
```

- for GPU

```bash
#!/bin/bash
#SBATCH --job-name=gputf
#SBATCH --output=gputf.std.out
#SBATCH --error=gputf.std.err
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cluster=gpu
#SBATCH --partition=gp
#SBATCH --gres=gpu:4
```

Troubleshoot

- **SSH connection**
 - If you are on a wireless network, make sure the VPN connection is established.
 - Use `ping` to check network connectivity to host, eg. `ping htc.sam.pitt.edu`
 - Use `ssh` in verbose mode with `-v` to identify possible causes, eg. `ssh -v h2p.crc.pitt.edu`

- **Jobs submission**
 - Sanity test the environment by submitting a simple job, eg. `#!/bin/bash

 #SBATCH --output=test.out

 #SBATCH --error=test.err

 #SBATCH --time=00:10:00

 #SBATCH --output=test.out

 #SBATCH --error=test.err`

- **Software access**
 - Check if the software is available using `module list`
 - Check if the module is loaded with `module avail`

- **Notes**
 - In software, superscripts indicate availability over a cluster: h=HTC, s=SMP, g=GPU, o=OPA, items in red indicate licensed software
 - To print this document on letter size paper use the printer’s `fit to size` option.
 - `BiGxi` source on git: `github.com/ ketancmaheshwari/crc_cheatsheet`

- **Acronyms**

 | HTC | High Throughput Computing |
 | SMF | Shared Memory Processing |
 | OPA | Omni-Path |
 | IB FDR | InfiniBand Fourteen Data Rate |
 | GPV | Graphics Processing Unit |
 | SSD | Solid State Drive |
 | NTA | Non-Traditional Architecture |
 | NVMe | Non-volatile Memory express |
 | ZFS | Zettabyte File System |