Towards treating the non-valence correlation-bound anion of TCNE with Quantum Monte Carlo

Amanda Dumi[†], Shiv Upadhyay[†], James Shee[‡], Kenneth D. Jordan[†] Department of Chemistry, University of Pittsburgh [‡]Department of Chemistry, University of California Berkeley

Motivation

Previous work:

- QMC methods can recover from poor trial wavefuncions
- rSDCI offers a balance between accuracy and computational cost

DOI: 10.1063/5.0030942

Method (basis: aug-cc-pVTZ+3s1p)	EBE (Ha)
HF	-0.4
EOM-CCSDT(est)	197.5
DMC (HF)	183 +/- 10
AFQMC (rSDCI)	194 +/- 10

$$E_{corr} = E_{true} - E_{Hartree-Fock}$$

This work: tetracyanoethylene has an NVCB anion but has an additional challenge of low lying valence states.

DOI: 10.1063/1.4991497

Current Findings

Finding: rSDCI stabalizes a low lying valence state, thus is **not** a suitable trial wave function **Possible solution:** EOM-EE-MP2 locates correct state with correct diffuse shape

Conclusion

- rSDCI wave function for this system runs into trouble due to valence states of the same symmetry, making this an even more interesting case.
- Trial wave function based on EOM-EE-MP2 results may offer alternative with more realistic charge distribution of correct state.

Acknowledgments

Funding: National Science Foundation CHE-1807683

American Chemical Society Petroleum Research Fund DNI-63213

Resources: Center for Research Computing, University of Pittsburgh

Software: QMCPACK, CFOUR, GAMESS,

Avogadro2, matplotlib

