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Objectives

* To identity and quantify the
traffic-induced dynamic porewater
pressure and 1ts effect on
pavement mechanical
manifestations.

* To optimize the design of
moisture resistance of pavement
structures to dynamic water
pressure induced damage

Figure 1. Moisture induced damage to pavement!

Background

* Plenty of sources for water infiltrating pavement layers

* Entrapped water under dynamic traffic loads can develop
intense water pressure which can significantly damage
pavement structural capacity

From Edge Surface Natural

" High-Ground
" ; Drainage
b g 8.0 0.0.0

Figure 2. Sources of moisture 1in pavement

Asphalt layer
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Figure 3. Effect of water pressure on pavement layers
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Methodology Results

* Concrete layer with crack
>

* Program of multi-layer (N-layer) pavement system
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Figure 4. Multi-layer (N-layer) pavement system

* Governing equations (Biot’s Equations?)
Traffic load

* Equation of motion

Oijj = PU; +prw; 4
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* The constitutive relationships ;
O-ij =2,uel]+l6l]e—a5up 7
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* Darcy’s law:
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u: displacement of soil skeleton p: fluid pressure
w: average relative displacement of fluid to soil frame
&: variation in fluid content e;;: strains. a: Biot's coefficient

o: total stress 1in bulk material 1 /b: permeability coefficient

* Developed computational program - ol . . . I
Poroelastodynamic Finite Integration Technique (PEFIT?) o 0 e o
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* Velocity-stress staggered-grid finite-difference method

* Fourth-order accuracy in space and second-order accuracy in time N EE—
 Can be applied on 2D and 3D poroelastic media [ R A S R B B
. . o A 2 A A
* Stagger velocity vector and stress tensor 1n space T N
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Figure 5. Staggered-grids in space domain S A A
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Figure 6. Staggered-grids in time domain
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Poroelastic modeling of porewater movement and pore pressure development in pavement system
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Figure 7. Water fill base layer under traffic load

e Si1ze of model: 1440 x 90. Cell number: 129,600. Plate form: MATLAB
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Figure 8. Dynamic pore pressure at critical moments
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/ Figure 9. Porewater flow rate at critical moments
Conclusion

u/ % u/ 0/ * Dynamic pressure development and directional water flow are
successfully simulated by the program
* PEFIT 1s regarded as a promising tool for solving dynamic pore pressure

related problems 1n pavement engineering
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