

Swanson School of Engineering

Center for Research Computing

Diffusion of IPA in UiO-66

Jacob Wardzala

Department of Chemical and Petroleum Engineering

Background and Methods

MOF Forcefield: Modified Rogge et al.* UiO-66 potential to include hydrogen bonds

IPA forcefield: TraPPE-United Atom^t

Linker Expansion. Chem. Mater. 2016, 28, 5721-5732.

* Rogge, S. M. J. et al. Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and

^{*} B. Chen et al. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary and tertiary alcohols. J. Phys. Chem. B 105, 3093-3104 (2001).

Molecular Dynamics Outline

- 1.) Insertion of IPA
- 2.) 50 ps NVT equilibration
- 3.) 25 ns NVE production

T = 325K for finite loadings T = 325K, 350K, 425K for 0 loading

Diffusion Calculations

$$\boldsymbol{D}_{\boldsymbol{s}} = \lim_{t \to \infty} \frac{1}{2dNt} \left\langle \sum_{i=1}^{N} |r_i(t) - r_i(0)|^2 \right\rangle$$
$$\boldsymbol{D}_{\boldsymbol{c}} = \lim_{t \to \infty} \frac{1}{2dNt} \left\langle \left| \sum_{i=1}^{N} r_i(t) - r_i(0) \right|^2 \right\rangle$$

0-Loading

Т(К)	a) $D_{s} [\frac{m^{2}}{s}]$	b) $D_{s} [\frac{m^{2}}{s}]$
325	2.18 x 10 ⁻¹¹	4.62 x 10 ⁻¹³
350	3.49 x 10 ⁻¹¹	1.42×10^{-12}
425	9.11×10^{-11}	1.21 x 10 ⁻¹¹

Hydrogen bonding has a profound effect on diffusivity

Activation Energy

Model	E_a (kJ/mol)
Rogge et al. (a)	16.14
TraPPE/Rogge (b)	37.02

Hydrogen bonding additionally effects the activation energy to diffusion

Finite Loading

Absolute loading (molecules/formula unit)

Loading	$D_s \left[\frac{m^2}{s}\right]$	$D_{\mathcal{C}}\left[\frac{m^2}{s}\right]$
1	4.57 x 10 ⁻¹²	1.3 x 10 ⁻¹¹
2	1.12×10^{-11}	5.1×10^{-11}
3	2.17 x 10 ⁻¹¹	6.8×10^{-11}
5	3.41×10^{-11}	1.2×10^{-10}
7	2.04×10^{-11}	4.6×10^{-11}

Diffusivity increases until roughly saturation loading, then decreases

O Loading Favorable Sites

Low loading – hydrogen bonding sites very favorable

7 Loading

High loading – Crowding of hydrogen bonding sites push IPA to less favorable locations

Acknowledgments

- Funding was provided by the Defense Threat Reduction Agency (DTRA)
- Compute resources were allocated by the University of Pittsburgh Center for Research Computing (CRC)

Conclusions

- Hydrogen bonding plays a large role in the diffusion of IPA in UiO-66
- Corrected diffusivities can be used for comparison to experimental transport diffusivity

Future Work

- Collaboration with experimentalists
- Examination of defective UiO-66
- Exploration of free energy curves as guest molecules cage hop