
Transitioning from your 
laptop to CRC

Leonardo Bernasconi

Center for Research Computing and
Department of Chemistry
University of Pittsburgh

07 March 2024



Aims of this workshop

1. What resources CRC provides to Pitt researchers
2. How to request resources on and access the CRC systems
3. How to run jobs efficiently
4. How to get help
5. How to port, profile, and benchmark software 
6. How to move data to/from the CRC systems

Why should I use the CRC systems instead of my own PC/laptop or large 
supercomputing facilities?

How can I optimize my software/computational workflows to make the most 
efficient use of what CRC offers?



Table of contents

1. The CRC ecosystem 
2. How to request compute time: initial allocations and “proposals”
3. Options for accessing CRC resources 
4. How to start: useful commands and other things to know
5. Slurm: how to submit jobs
6. Example: from your laptop to smp
7. Serial and parallel computation
8. How to set up your workflows



Our website

https://crc.pitt.edu

https://crc.pitt.edu/


1.
The CRC ecosystem



Computing hardware: the four CRC clusters

• Hardware
• Storage
• Software
• People



Computing hardware: the four CRC clusters

https://crc.pitt.edu/resources/computing-hardware

1. MPI 
“Massively parallel” calculations on two or more nodes, e.g., 
molecular dynamics on large systems, computational fluid dynamics

2. SMP
Shared-memory calculations, e.g., quantum chemistry

3. HTC
High-throughput calculations, e.g., gene sequencing

4. GPU
GPU acceleration, e.g., machine learning

Partitions

https://crc.pitt.edu/resources/computing-hardware


Computing hardware: the four CRC clusters

Which cluster should we select for our work?

It depends on the software we plan to use. 

If the software has MPI capabilities, the mpi (or smp) clusters are the 
best choice. Similarly, if the software has been optimized for GPU, 
the choice is easy. 

In general, for software that has neither MPI capabilities nor GPU 
acceleration, smp or htc are good choices. The software will work 
exactly as on a PC/laptop, but it will benefit from higher memory 
availability, multi-core capabilities, and higher execution speed.   

https://crc.pitt.edu/resources/computing-hardware

https://crc.pitt.edu/resources/computing-hardware


Storage

https://crc.pitt.edu/resources/data-storage

Each user has 75GB available under ihome, 
e.g., /ihome/leb140g/ritu

In addition, each group has 5TB of persistent
data storage, available to all users in the 
group, e.g., /ix/leb140g

Additional storage can be requested, at a
cost of $65/TB/year from our webform.

In total, currently CRC makes ca. 6PT of
persistent storage available to Pitt users.

https://crc.pitt.edu/resources/data-storage
https://services.pitt.edu/TDClient/33/Portal/Requests/TicketRequests/NewForm?ID=D8BjnEQtuz0_&RequestorType=Service


Software

https://crc-pages.pitt.edu/user-manual/applications/software-list/

CRC maintains over 1200 software packages covering wide varieties of 
disciplines. The complete list can be displayed using the LDAP command: 

module spider

CRC personnel builds, optimizes, and maintains these packages on the 
clusters. Some of them are licensed software, which requires special 
permissions to run, other is open-source or non-licensed software, which 
can be used freely.

https://crc-pages.pitt.edu/user-manual/applications/software-list/
https://ldap.com/


People

https://crc.pitt.edu/about-us/people

CRC provides scientific, as well as technical support, to its users. CRC with 
specific expertise can be contacted directly or via the ticketing system.

Kim Wong (Physical Chemistry) kimwong@pitt.edu 
Leonardo Bernasconi (Quantum Chemistry) leb140@pitt.edu
Nickolas Comeau (Research Computing) nlc60@pitt.edu
Yassin Khalifa (Data Science, GPU Programming) yak73@pitt.edu
Fangping Mu (Bioinformatics, Health Sciences) fangping@pitt.edu
Daniel J. Perrefort (Physics) djperrefort@pitt.edu
Cheng Xiao (Engineering, GPU Programming) chx33@pitt.edu

https://crc.pitt.edu/about-us/people
https://crc.pitt.edu/webforms-requests/help-ticket-guidelines
mailto:kimwong@pitt.edu
mailto:leb140@pitt.edu
mailto:nlc60@pitt.edu
mailto:yak73@pitt.edu
mailto:fangping@pitt.edu
mailto:djperrefort@pitt.edu
mailto:chx33@pitt.edu


2.
Requesting resources on the CRC 
clusters



Service Units (SUs)

https://crc-pages.pitt.edu/user-manual/slurm/service-units/

One service units is approximately equal to the resources consumed by 
one core running for one hour. The exact SU charge of a job depends on:

• which cluster/partition a job is submitted to
• the number of cores requested
• the RAM (memory) the job required
• the number of cards, if the job runs on the GPU cluster

To figure out the SU charge for a given cluster, look for the 
“TRESBillingWeights” in the output of the command 

scontrol –M cluster show partition 

where cluster = smp, htc, mpi, gpu.

https://crc-pages.pitt.edu/user-manual/slurm/service-units/


How to request SUs: Initial allocation

Each user receives an initial allocation of 25,000 SUs, which can be used 
on any of the CRC clusters. This amount is typically sufficient to carry out 
test runs and estimate the total SUs that a project may require.

CRC provides free user accounts to all Faculty and PIs at Pitt. Faculty/PIs 
can request their One-time Startup Allocation (25,000 SUs, 75GB /ihome 
storage, and 5TB ix storage) by submitting a webform.  

The Faculty/PIs can add users (students, postdocs, and staff) by submitting 
a help ticket. Each of these users will receive their initial allocation (25,000 
SUs and 75GB /ihome storage) and get access to the PI’s ix storage. 

A user can share resources with more than one group. The groups to 
which a user belongs can be displayed using:

id user

https://services.pitt.edu/TDClient/33/Portal/Requests/TicketRequests/NewForm?ID=Nf6SbpE%7e93A_&RequestorType=Service
https://services.pitt.edu/TDClient/33/Portal/Requests/TicketRequests/NewForm?ID=yXkHi62rHa8_&RequestorType=Service


Requesting SUs for research (or for teaching)

https://crc.pitt.edu/Pitt-CRC-Allocation-Proposal-Guidelines

CRC relies on “proposals” (or resource requests) to distribute SUs to Pis 
and track their usage. Proposals can be submitted using a template and a  
webform, which should contain the following information:

• brief description of scientific background and aims of the project
• estimates of SUs requested on each cluster for one year
• funding sources for the project (if any)
• scientific publications or other research products derived from the 

project.

A maximum of 3,200,000 SUs can be requested. SU allocation can be 
renewed (on request) after one year. If more resources are required than 
initially projected during the one-year time, 
supplemental allocations can be requested. 

https://crc.pitt.edu/Pitt-CRC-Allocation-Proposal-Guidelines
https://services.pitt.edu/TDClient/33/Portal/Requests/TicketRequests/NewForm?ID=yQOBLM-MZds_&RequestorType=Service


3.
How to access the CRC clusters



Accessing the CRC clusters

https://crc.pitt.edu/getting-started/accessing-cluster

The login nodes of the h2p or htc clusters can be accessed in a variety of 
ways. The most common and flexible method makes use of the ssh 
command available in Mac and Linux (or with Xming or Putty in Windows):

ssh username@h2p.crc.pitt.edu

where username is your Pitt ID. 

Login nodes should be used exclusively for editing files and submitting 
jobs to the compute nodes (on the smp, htc, mpi, or gpu clusters) via the 
Slurm scheduler.

Accessing the CRC clusters from an off-campus or
wireless connection requires prior connection to
the Pitt VPN . 

 

https://crc.pitt.edu/getting-started/accessing-cluster
https://sourceforge.net/projects/xming/
https://www.putty.org/
https://services.pitt.edu/TDClient/33/Portal/KB/ArticleDet?ID=293


Other ways to access the CRC clusters

https://crc.pitt.edu/getting-started/accessing-cluster

OpenOnDemand allows one to open a terminal and automatically connect 
to htc, as well as to use Jupyter, RStudio Server, and Matlab. 

VIZ can be used to connect open a terminal and automatically connect to a 
login node. VIZ is particularly useful when we want to use software 
requiring a GUI.
 

https://crc.pitt.edu/getting-started/accessing-cluster
https://crc-pages.pitt.edu/user-manual/web-portals/open-ondemand/
https://crc-pages.pitt.edu/user-manual/web-portals/viz/


4.
How to start: useful commands and 
other things to know



Finding your group(s) and the storage available to you

pwd
id user 
crc-quota (one of the CRC wrappers)

Finding software packages installed with LMOD

module spider
module spider package
module load package
module list
module unload package

Note some software packages have dependencies, i.e., modules that need 
to be loaded in advance. Sometimes, looking at these dependencies gives 
clues on the best way to run the software.

https://lmod.readthedocs.io/en/latest/


Transferring data to/from the clusters 

Secure File Transfer Protocol (SFTP)
sftp user@h2p.crc.pitt.edu (or user@htc.crc.pitt.edu)

Secure Copy Protocol (SCP)

- Copy origin from your local computer to the login nodes:
scp origin user@h2p.crc.pitt.edu:/target 

- Copy origin from the login nodes to your local computer:
scp user@h2p.crc.pitt.edu:/origin . 

https://www.ssh.com/academy/ssh/sftp-ssh-file-transfer-protocol
https://www.ssh.com/academy/ssh/sftp-ssh-file-transfer-protocol


Large data transfers 

rsync 

- Copy a directory from your local computer to the cluster:
rsync -azP /Users/leo/MEGA/PyDF/library/ 
leb140@h2p.crc.pitt.edu:/xhome/crc/leb140/Codes/PyDFx/lib
rary

- Copy a directory from the cluster to your local computer:
rsync -azP 
leb140@h2p.crc.pitt.edu:/xhome/crc/leb140/Codes/PyDFx/lib
rary/ /Users/leo/MEGA/PyDF/library

Globus

https://linux.die.net/man/1/rsync
https://crc-pages.pitt.edu/user-manual/data-management/globus/


5.
The Slurm Workload Manager



Overview

Slurm is a job scheduler for computer clusters and large supercomputers. 
It provides the most important method to access the compute nodes on 
all CRC clusters, allocate resources, run jobs, and collect their results.

Typically, calculations are submitted to Slurm using batch jobs, which 
contain specific directives instructing Slurm on the details of the 
calculations to be performed.

Slurm automatically check availability of resources, dispatch the job to 
available node(s) on a cluster, and control the execution of the calculation.

Users can fine-tune Slurm’s behaviour by using suitable directives in the 
batch job.

https://crc-pages.pitt.edu/user-manual/slurm/slurm-overview/
https://crc-pages.pitt.edu/user-manual/slurm/batch-jobs/


Interactive sessions

It is sometimes a good idea to run tests on or benchmark new software 
before submitting production calculations through Slurm. This can be done 
by creating a session on one or more nodes with the srun command, on 
which we can then run software without having to go through a Slurm 
submission. 

CRC also provides a specific wrapper (crc-interactive) that simplifies 
setting up interactive sessions on the cluster.

Important: Running jobs using Slurm or an interactive session are the only 
two ways to perform calculations on the CRC clusters. Running jobs 
directly on the login nodes is strictly forbidden!

https://crc-pages.pitt.edu/user-manual/slurm/interactive-jobs/


Useful Slurm commands

The sinfo command (and its CRC wrapper crc-sinfo) provide an 
overview of the node availability on all CRC clusters and in the partitions 
within the clusters. It is useful to figure where to submit a jobs, for 
example for software that can run on more than one cluster.

Batch scripts (see below) are submitted using the sbatch command. The 
state of a job can be verified using the command squeue (or the wrapper 
crc-squeue). See this Table for the meaning of the job state. 

We can get more information on pending or allocated jobs using the 
scontrol command:
scontrol –M cluster show job jobid

Jobs (pending or allocated) can be cancelled using scancel (or crc-
scancel).

https://crc-pages.pitt.edu/user-manual/slurm/slurm-overview/
Table


Batch scripts

A minimal example:

#!/bin/bash 
#SBATCH --job-name=<job_name> 
#SBATCH --nodes=<number of nodes> 
#SBATCH --ntasks-per-node=<tasks per node> 
#SBATCH --cluster=<cluster name> 
#SBATCH --partition=<partition> 
#SBATCH --time=<days-HH:MM:SS> 
 
program.x < input > output 

Save this to a file (e.g., job.slurm) and submit using:

sbatch job.slurm



Batch scripts

Loading modules:

#!/bin/bash 
#SBATCH --job-name=<job_name> 
#SBATCH --nodes=<number of nodes> 
#SBATCH --ntasks-per-node=<tasks per node> 
#SBATCH --cluster=<cluster name> 
#SBATCH --partition=<partition> 
#SBATCH --time=<days-HH:MM:SS> 

module purge 
module load module1 module2 
 
program.x < input > output 



Batch scripts

Runs with shared memory parallelism:

#!/bin/bash 
#SBATCH --job-name=<job_name> 
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=<tasks per node> 
#SBATCH --cluster=<cluster name> 
#SBATCH --partition=<partition> 
#SBATCH --time=<days-HH:MM:SS> 

module purge 
module load module1 module2 
 
srun < program.x (with parameters, if any)



Batch scripts

Runs with shared message passing interface (MPI, multiple nodes):

#!/bin/bash 
#SBATCH --job-name=<job_name> 
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=<nodes * tasks per node> 
#SBATCH --cluster=<cluster name> 
#SBATCH --partition=<partition> 
#SBATCH --time=<days-HH:MM:SS> 

module purge 
module load module1 module2 
 
mpirun -np $SLURM_NTASKS program.x



Batch scripts

GPU runs:

#!/bin/bash 
#SBATCH --nodes=1 
#SBATCH --time=0-00:01:00 
#SBATCH --ntasks-per-node=<NUMBER OF GPU NODES> 
#SBATCH --gres=gpu:<NUMBER OF GPUs PER NODE> 
#SBATCH --cluster=gpu 
#SBATCH --partition=a100 

<USER_SPECIFC COMMAND FOR GPU CODE TO BE EXECUTED>



Batch scripts

Monitoring performance with crc-job-stats:

#!/bin/bash 
#SBATCH --job-name=<job_name> 
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=<nodes * tasks per node> 
#SBATCH --cluster=<cluster name> 
#SBATCH --partition=<partition> 
#SBATCH --time=<days-HH:MM:SS> 

module purge 
module load module1 module2 
 
mpirun -np $SLURM_NTASKS program.x

crc-job-stats



Batch scripts

Using the scratch space:

#!/bin/env bash
#SBATCH --job-name=cp2k
#SBATCH --output=output.out
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=28
#SBATCH --time=0-48:00:00
#SBATCH --cluster=mpi
#SBATCH --error=run.err

module purge
module load intel/2019.4 intel-mpi/2019.4 cp2k/7.1

files=(ammonia.inp NH3.xyz)
for i in ${files[@]}; do
  sbcast $SLURM_SUBMIT_DIR/$i $SLURM_SCRATCH/$i
done

run_on_exit(){
  cp -R $SLURM_SCRATCH/* $SLURM_SUBMIT_DIR
  pkill --uid=$SLURM_JOB_USER cp2k.popt
}
trap run_on_exit EXIT

cd $SLURM_SCRATCH
mpirun -np $SLURM_NTASKS cp2k.popt -i ammonia.inp
wait

crc-job-stats



Batch scripts

Using the scratch space:

#!/bin/env bash
#SBATCH --job-name=cp2k
#SBATCH --output=output.out
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=28
#SBATCH --time=0-48:00:00
#SBATCH --cluster=mpi
#SBATCH --error=run.err

module purge
module load intel/2019.4 intel-mpi/2019.4 cp2k/7.1

files=(ammonia.inp NH3.xyz)
for i in ${files[@]}; do
  sbcast $SLURM_SUBMIT_DIR/$i $SLURM_SCRATCH/$i
done

run_on_exit(){
  cp -R $SLURM_SCRATCH/* $SLURM_SUBMIT_DIR
  pkill --uid=$SLURM_JOB_USER cp2k.popt
}
trap run_on_exit EXIT

cd $SLURM_SCRATCH
mpirun -np $SLURM_NTASKS cp2k.popt -i ammonia.inp
wait

crc-job-stats

While a job is running, it is 
possible to ssh to the node(s) on 
which it is running and monitor 
files in the scratch space. These 
are located in /scratch/jobID.



Batch scripts

Submitting multiple jobs (job arrays):

#!/bin/bash
#SBATCH -N 1
#SBATCH --time=0-01:00:00
#SBATCH -J testJA
#SBATCH --output=test-%A\_%a.out
#SBATCH --array=1-5 # job array index 
#SBATCH --cpus-per-task=1
#SBATCH --cluster=smp

echo ${SLURM_ARRAY_TASK_ID}
program.x (parameters)

Job arrays offer, in some cases, a simple way to parallelize a code.

https://crc-pages.pitt.edu/user-manual/slurm/job-arrays/


Batch script example: ANSYS

#!/bin/bash
#SBATCH --job-name=job
#SBATCH --output=fluent.o%j
#SBATCH --error=fluent.e%j
#SBATCH --job-name="ansys"
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=64
#SBATCH --cluster=smp
#SBATCH --time=1:12:00

# Load Modules
module purge
module load ansys

echo  $SLURM_NTASKS

fluent 3ddp  -i fluent_test.jou -gu  -t$SLURM_NTASKS -driver null



Batch script example: AMBER MD on gpu
#!/bin/bash
#SBATCH --job-name=gpus-2
#SBATCH --output=gpus-2.out
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --cluster=gpu
#SBATCH --partition=v100
#SBATCH --gres=gpu:2
#SBATCH --time=24:00:00

# Load Modules
module purge
module load intel/2017.3.196
module load amber/18

# Amber input files and output name
INP=md.in
TOP=mocvnhlysm.top
CRD=mocvnhlysm.crd
OUT=mocvnhlysm

# Executable
SANDER=pmemd.cuda.MPI

# Launch PMEMD.CUDA
echo AMBERHOME   $AMBERHOME
echo SLURM_NTASKS $SLURM_NTASKS
nvidia-smi

mpirun -n $SLURM_NTASKS \
     $SANDER  -O   -i  $INP  -p  $TOP  -c  $CRD  -r  $OUT.rst \
             -o  $OUT.out  -e  $OUT.ene  -v  $OUT.vel  -inf $OUT.nfo  -x  $OUT.mdcrd



Batch script example: CP2K on mpi using Singularity
#!/bin/env bash
#SBATCH --job-name=dcp2k
#SBATCH --output=output.out
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=48
#SBATCH --time=0-24:00:00
#SBATCH --cluster=mpi
#SBATCH --error=run.err
#SBATCH --partition=mpi

module purge
module load singularity/3.9.6

# mpich
module load gcc/5.4.0
module load mpich/3.1

export FI_PROVIDER=tcp
export I_MPI_OFI_PROVIDER_DUMP=enable

export OMP_NUM_THREADS=1
mpirun -np 96 singularity run ../cp2k.sif cp2k -i H2O-32.inp

wait
crc-job-stats.py



Batch scripts

We provide a small collection of sample Slurm scripts under

/ihome/crc/how_to_run/

Often, it is possible to modify easily existing scripts to make them work for 
new software. 

For more difficult cases you can always submit a help ticket (or contact us 
by email), and we will help setting your script for the CRC clusters. 



6.
Example: from your laptop to smp



A simple Python program

A code for computing prime numbers within a given range:

/xhome/crc/leb140/WorkshopMarch2024/prime_numbers.py

It needs an input file like

/xhome/crc/leb140/WorkshopMarch2024/input.inp

Which contains the first and last integer number in the desired range.



A simple Python program

1) Copy the Python file and the input file to your local computer using 
scp or sftp

2) Run it using: 
python prime_numbers.py input.inp
or
python3 prime_numbers.py input.inp

3) Note the execution time, which is printed out

4) Now run the same task on smp, by submitting it to Slurm using the 
sample script available in this directory:

/xhome/crc/leb140/WorkshopMarch2024/job1.slurm

Try running by requesting 1, 2, or more CPUs.
What do you notice?



“Parallelization” using job arrays 

We can use a Slurm job array to submit two or more instances of 
prime_numbers.py. Each instance uses a different input file, defining a 
different range, for instance: 2-10000, 10001-20000, etc.

All instances will work simultaneously, and each instance will produce its 
own output, with its own part of the prime numbers between 2 and 
50000.

An example of how this can be done is available here:

/xhome/crc/leb140/WorkshopMarch2024/JobArray/job1.slurm
   



“Parallelization” using job arrays 

/xhome/crc/leb140/WorkshopMarch2024/JobArray/job1.slurm

!/bin/bash
#SBATCH -N 1
#SBATCH --time=0-01:00:00
#SBATCH -J testJA
#SBATCH --output=test-%A\_%a.out
#SBATCH --array=1-2 # job array index 
#SBATCH --cpus-per-task=1
#SBATCH --cluster=smp

echo "Reading input.inp_"${SLURM_ARRAY_TASK_ID}

python prime_numbers.py "input.inp_"${SLURM_ARRAY_TASK_ID}

   



7.
Serial and parallel computation

Thanks to Dr. Fangping Mu



Serial calculations

Traditionally, software has been written for serial computers, often with 
only one CPU (or processor). 

A problem is coded as a series of instructions, compiled to machine 
language, and dispatched to the CPU.

Only one instruction can be executed at a given time.
   



Multicore calculations 

In its simplest sense, parallel computing is the simultaneous use of more 
than CPU to solve a problem. 

The problem is broken into discrete parts that can be solved concurrently. 
Instructions from each part execute simultaneously on differenc CPUs.
   



Parallelization approaches

In addition to job arrays, we have:

1. Shared memory parallelization
2. Distributed memory parallelization
3. Hybrid shared-memory/distributed parallelization
   
2. and 3. distribute the workload over different (and, potentially, many) 
nodes, each of which contains several CPUs.

Unlike job arrays, 1.-3. require changes in the source code, compared to 
the serial code. 1. is usually considered the easiest way to parallelize a 
code. 2.-3. can lead to much higher efficiency (massive parallelization) but 
they require extensive, and often complex, code rewriting. 



Shared memory parallelization (smp and htc) 

Calculations are carried out on single node, but the workload is broken 
into parts that are executed by different CPUs. Each of these processes (or 
threads) has access to the same memory space of all the other processes.

What is the difference between shared memory parallelization and job 
arrays? 



Shared memory parallelization (smp and htc) 

Many codes are parallelized using this approach. If you have a serial code 
that you would like to make parallel, shared memory is probably the first 
approach to consider. 

For instance, it is usually quite straightforward to use packages like 
multiprocessing to parallelize code in Python. For software written in 
traditional HPC programming languages, like C or Fortran, specific libraries 
are available to enable shared memory parallelization, like Pthreads and 
OpenMP. 

Running shared-memory applications is relatively easy: we just need to 
instruct Slurm on how many threads we want to run, how many CPUs are 
used for each thread, and, potentially, how much memory in total the 
program requires. 



Distributed memory parallelization (mpi) 

The workload is distributed among different tasks, each of which executes 
its own instructions independently from all the others. Each task has its 
own private portion of data in memory, which is not visible to other tasks.

Tasks can run on multiples nodes (using multiple CPUs on each node), 
which must be connected using a fast a fast network, or fabric, e.g., 
InfiniBand (IB) or Omni-Path Architecture (OPA).

Rapid communication among tasks is made possible by 
the Message Passing Interface (MPI) libraries. 



Distributed memory parallelization (mpi) 

MPI codes typically target massively-parallel HPC calculations. There is a 
substantial effort required to make distributed memory software work 
efficiently, both at the programming level and during the compilation of 
the code.

Running MPI applications requires specifying the number of nodes on 
which the program is running and how many MPI tasks are going to run on 
each node. Typically (but nor necessarily) one CPU is used for each task. 

Increasing the number of MPI tasks does not always increase 
performance. Larger numbers of tasks will carry out their individual 
operations in less time, but the communications between tasks may 
decrease efficiency. 

It is always wise to test the execution speed versus the 
number of MPI tasks (see example later).



Hybrid distributed-shared memory parallelization (mpi) 

This is a very powerful approach, which exploits the advantages of multi-
core shared-memory and multiple node communication. Very few codes 
implement this approach successfully (an example is the quantum-
chemistry code CP2K).

Typically, it is quite complex to figure out how many threads should be 
used for a given number of nodes to obtain efficiency superior to pure 
MPI. Although powerful, this approach requires substantial investment of 
time in preparing the calculations.  



GPU “parallelism” (gpu) 

Graphical processing units (GPUs) have many more cores that CPUs. 
Initially develop to accelerate graphical applications, they has found 
extensive use also in other fields, e.g., machine learning, classical 
molecular dynamics, and cryptocurrency mining. 

They are ideal for embarrassingly parallel problems, in which little or no 
effort is required to break the problem into separate 
tasks.
  



GPU “parallelism” (gpu) 

Modifying existing code to exploit GPU acceleration requires a skill-set 
that can be difficult to acquire (e.g., CUDA programming). Furthermore, 
code must be fine tuned and optimized for the specific type of GPU you 
are using.  

However, if GPU versions of specific packages are installed, or available, it 
is often a good idea to assess their efficiency compared to their CPU 
counterparts. 

GPU experts at CRC

Yassin Khalifa (Data Science, GPU Programming) yak73@pitt.edu
Cheng Xiao (Engineering, GPU Programming) chx33@pitt.edu

  

mailto:yak73@pitt.edu
mailto:chx33@pitt.edu


8.
Setting up your workflows

Thanks to Dr. Fangping Mu, Dr. Cheng Xiao 



Building your workflow on the CRC clusters

1. Is the software that I need available at CRC?

The module spider <software> commands provides this information. It 
also shows which versions of the software are installed.

If it is not installed, you can request installation by
submitting a help ticket (or try installing it yourself).



Building your workflow on the CRC clusters

2. On which cluster(s) will the software work best?

Serial and shared-memory parallel software will work well on smp or htc. 
MPI software is ideal for the mpi cluster, but it can also run on smp. GPU 
software will work well on the gpu cluster. 

How to find out? 
module spider <software> gives this information in most cases (e.g., 
cp2k, tensorflow, pytorch, amber, etc.)

Software that does not depend on MPI or CUDA libraries likely works well 
on smp and htc. 

  



Building your workflow on the CRC clusters

3. How can I know if smp/htc software runs in parallel?

Looking at the dependencies of the software can give an idea of whether 
the software is shared-memory parallelized.

[fangping@login0b ~]$ cd /ihome/crc/install/star/STAR-2.7.9a/bin/Linux_x86_64
[fangping@login0b Linux_x86_64]$ ldd STAR
 linux-vdso.so.1 =>  (0x00007fffa6b61000)
 libz.so.1 => /lib64/libz.so.1 (0x00007f95eca57000)
 libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007f95ec750000)
 libm.so.6 => /lib64/libm.so.6 (0x00007f95ec44e000)
 libgomp.so.1 => /lib64/libgomp.so.1 (0x00007f95ec228000)
 libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f95ec012000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f95ebdf6000)
 libc.so.6 => /lib64/libc.so.6 (0x00007f95eba28000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f95ecc6d000)

libgomp is the GNU OpenMP library



Building your workflow on the CRC clusters

4. How do I set up my Slurm script(s)?

The best way is to open an interactive session (see crc-interactive) on the 
cluster you want to use, and test the software, with no need to submit it 
to Slurm. Once the correct command(s) and parameters to launch the 
software have been identified, you can use the sample scripts given in 
/ihome/crc/how_to_run to create your template. 

Of course, you can always contact us if you need help at this stage.

  



Building your workflow on the CRC clusters

5. How do I figure out the optimal resources to use?

Scaling tests

#!/bin/env bash
#SBATCH --job-name=v22n
#SBATCH --output=output.out
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=48
#SBATCH --time=0-24:00:00
#SBATCH --cluster=mpi
#SBATCH --error=run.err
#SBATCH --partition=mpi

module load … 
<execute command> 
crc-job-stats
  

Information about code performance is also important 
for requesting additional SUs with proposals.

0 200 400 600 800 1000
number of MPI processes

0

500

1000

1500

2000

2500

3000

tim
e

 (
se

co
n

d
s)

CP2K 6.1 – AIMD, 64 water molecules



9.
Summary



Should I transition to CRC from my laptop?

Most likely, yes.

CRC provides state-of-the-art hardware, a rich and growing library of pre-
installed and optimized software, domain-specific expertise, and 
dedicated support to Pitt users.

The initial free SU allocation is generally more than sufficient to test 
software, create workflows, and estimate how much more computer time 
we may need to complete a project.

Getting help on any aspect of creating a workflow, from installing and 
testing software to more specific issues about its usage is easy: either 
submit a help ticket or contact the CRC consultants at any time. We will be 
very happy to help.

crc.pitt.edu 

https://crc.pitt.edu/

