

Advancing Research through Computing 2021

A Neural Network and Lennard-Jones Hybrid Forcefield to Study Diffusion of Neon in UiO-66

Siddarth Achar¹, Jacob Wardzala², Linfeng Zhang³, Leonardo Bernasconi⁴, J. Karl Johnson^{2,P}

 ¹Computaitonal Modeling and Simulation, University of Pittsburgh
²Chemical & Petroleum Engineering, University of Pittsburgh
³Program in Applied and Computational Mathematics, Princeton University

University of Pittsburgh ⁴Center for Research Computing, University of Pittsburgh

Overview

- We are using atomistic modeling to study UiO-66. a metal organic framework (MOF)
- Our goal is to model adsorption and diffusion of toxic molecules in UiO-66
- Density functional theory (DFT) simulations are very expensive for complex MOFs
- · Classical forcefields have limited capabilities and often not very accurate
- We developed a neural network (NN) forcefield (DP) using optimized training techniques
- Out forcefield exhibits excellent scaling, both to number of atoms and expansion
- We also demonstrate a technique to enable classical and DP to coexist in the same environment
- Diffusion of guest atoms was performed with this hybrid environment
- Future work will be to model diffusion for more complex molecules

Johnson group | University of Pittsburgh

UiO-66: Metal Organic Framework

UiO-66 is a robust and versatile MOF

- Constructed of organic linkers: $C_8H_4O_4^{-2}$ and metal oxide nodes $[Zr_6(\mu_3-O)_4(\mu_3-OH)_4]^{+12}$
- Uses in adsorption, separations, catalysis
- Large (octahedral) and small (tetrahedral) pores connected by triangular windows

How we build a DP

DeePMD:

1 TensorFlow

DP - UiO-66

🔵 : Any atom in UiO-66

Builds NN potentials for large potential energy surface

NN for each atom built by minimizing errors in energies and forces using the loss function (L)

 $L(p_{\epsilon}, p_f) = \frac{p_{\epsilon}}{N} \Delta E^2 + \frac{p_f}{3N} |\Delta F_i|^2$

Algorithm to build a DP

- All calculations and model building were performed at CRC: Mixture of MPI, SMP and GPUs
- NN Forcefield was built using small primitive cell
- Bulk modulus and lattice constants were convergence criteria

Primitive cell (114 atoms)

DP performance on primitive cell

DP + Empirical Forcefield (EFF): Ne Diffusion

- 500+ Ne atoms in 3000+ atoms of UiO-66 cell
- Hybrid approach to computing diffusion
- EFF: Lennard-Jones (LJ) + DP-UiO-66
- EFF is applied to Ne-Ne and Ne-UiO-66 interaction
- DP is applied for interaction of atoms in UiO-66

References

- 1. Zhang *et al. Phys Rev.* **3**, 023804 4. (2019) 5.
 - (2019) 5. W Rogge *et al.*, *CMS* **28**, 1015 (2015)
- 3. Wang *et al., Phys Comm.* **228** 178 (2018)
- Zhang *et al., CPC, 253 (2020)* Wu *et al. JPCL 4, 925 (2013)*

Table 1: Diffusion Constants of Neon at Zero Loading using (a) Rogge et al. Flexible UiO-66 and (b) DP for UiO-66

T(K)	(a) $D_S \ ({\rm m}^2/s)$	(b) $D_S \ ({\rm m}^2/s)$
300	2.12×10^{-8}	1.99×10^{-8}
350	2.43×10^{-8}	2.35×10^{-8}
400	2.83×10^{-8}	2.60×10^{-8}

Future work

- Performing diffusion for more complex systems:
 - Diatomic molecules (first step)
 - Chemical warfare agents like sarin (final goal)
- Using active learning techniques to reduce the number of DFT calculations for training a DP
- Train the potential on a smaller NN to make simulations faster

Acknowledgement

PittCRC Center for Research Computing DTRA: Grant HDTRA1-16-1-0044) Army Research Office : W911NF-19-2-0187

2.