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Overview UiO-66: Metal Organic Framework

• We also demonstrate a technique to enable 
classical and DP to coexist in the same 
environment

• Diffusion of guest atoms was performed with this 
hybrid environment

• Future work will be to model diffusion for more 
complex molecules

• Classical forcefields have limited capabilities and 
often not very accurate

• We developed a neural network (NN) forcefield 
(DP) using optimized training techniques

• Out forcefield exhibits excellent scaling, both to 
number of atoms and expansion

How we build a DP

𝐿𝐿 𝑝𝑝ϵ,𝑝𝑝𝑓𝑓 =
𝑝𝑝ϵ
𝑁𝑁
Δ𝐸𝐸2 +

𝑝𝑝𝑓𝑓
3𝑁𝑁

Δ𝐹𝐹𝑖𝑖 2

DeePMD: 
Builds NN potentials for 
large potential energy 
surface

NN for each atom built 
by minimizing errors in 
energies and forces 
using the loss function 
(L)

UiO-66 is a robust and versatile MOF

• Constructed of organic linkers: 
C8H4O4

-2 and metal oxide nodes 
[Zr6(µ3-O)4(µ3-OH)4]+12

• Uses in adsorption, separations, 
catalysis

• Large (octahedral) and small 
(tetrahedral) pores connected by 
triangular windows

• We are using atomistic modeling to study UiO-66, 
a metal organic framework (MOF)

• Our goal is to model adsorption and diffusion of 
toxic molecules in UiO-66

• Density functional theory (DFT) simulations are 
very expensive for complex MOFs



Properties DFT DP Experm.

Bulk Modulus 32.11 GPa 32.41 GPa -

Lattice 
constant

21.01 Å 21.01 Å 20.80 Å
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Algorithm to build a DP DP performance on primitive cell

Primitive cell (114 atoms)

MPI

SMP

GP
U

Training range

Compression Expansion

Birch-Murnaghan 
Equation of State

• All calculations and model building were 
performed at CRC: Mixture of MPI, SMP and 
GPUs

• NN Forcefield was built using small primitive 
cell

• Bulk modulus and lattice constants were 
convergence criteria

Force prediction 
accuracy on unseen 
data set

Evaluation of 
structural properties. 
Good agreement with 
experiments
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𝐸𝐸𝐴𝐴 = 2.67 kJ/mol

𝐸𝐸𝐴𝐴 = 2.69 kJ/mol

• 500+ Ne atoms in 3000+ atoms of UiO-66 cell 
• Hybrid approach to computing diffusion
• EFF: Lennard-Jones (LJ) + DP-UiO-66
• EFF is applied to Ne-Ne and Ne-UiO-66 interaction
• DP is applied for interaction of atoms in UiO-66

Future work

DP + Empirical Forcefield (EFF): Ne Diffusion

• Performing diffusion for more complex systems: 
• Diatomic molecules (first step)
• Chemical warfare agents like sarin (final goal)

• Using active learning techniques to reduce the number of DFT 
calculations for training a DP

• Train the potential on a smaller NN to make simulations faster
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