# Advancing Research through Computing 2021

Ron Nafshi

Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization

### Combination therapies are increasingly used to treat disease, but discovering them requires a lot of resources

Benefits of Combination Therapy Α Reduced Enhanced Dose Related Reduced Clinical **Drug Toxicity** Emergence

of Drug

Resistance

Outcome

The combination of drugs A and B has a greater therapeutic effect than either drug alone. A+B В

Testing all possible 2-drug combinations is costly and inefficient. Computation can help.



## Probabilistic Matrix Factorization (PMF) can impute missing efficacies for drug combinations





$$\mathbf{M}_{ij} = \mathbf{A}_i \mathbf{B}_j^T$$





- > We can express the matrix as the product of two low-rank matrices of latent factors, and then estimate them using gradient descent.
- ➤ For very large datasets, using low-rank approximations greatly decreases computational time

### PMF reduces experimental burden by 58%

We investigate the effects of the starting set of accuracy



> PMF is robust to changes in node identity and topology and predicts all elements with equal accuracy.



#### **Conclusions**

- ➤ A guided assay can identify 95% of all efficacious combinations while testing 60% of all available combinations.
  - Much greater than random chance.
- Since the accuracy of PMF does not change depending on node identity or topology, PMF guided assays could expediate current drug synergism assays.