# Novel Application of A Corresponding Point Algorithm for Unbiased Smoothing

Liam C. Martin, BSa, Megan R. Routzong, BSa, Pamela Moalli, MD, PhDb, Steven D. Abramowitch, PhDa



<sup>a</sup>Translational Research Laboratories in Urogynecology, Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA <sup>b</sup>Department of Obstetrics, Gynecology & Reproductive Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA

### INTRODUCTION

- Computationally comparing anatomical geometries is important in biomechanics
  - Shape modeling and Image analysis
  - Provides insight into anatomical changes related to disease and dysfunction
- Error can be introduced via many factors
- Slice thickness, Missing landmarks, Segmentation & Smoothing approaches, etc.
- Automatic smoothing of 3D geometries has been previously proposed<sup>1-2</sup>
  - Require high level of detail
  - Unable to predict missing landmarks
  - Requires a large amount of computational power

# **OBJECTIVES**

- Develop an unbiased template based smoothing protocol using a large deformation diffeomorphic metric mapping corresponding point algorithm (Deformetrica<sup>3</sup>)
  - Morph same template mesh into multiple patient-specific geometries
  - Must be able to smooth 3D geometries as well as or better than manual smoothing
  - Account for missing or incomplete image data
- Maintain anatomical features with high curvature
- Be able to account for aliasing in MR or CT data resulting from different slice thicknesses

### SMOOTHING PROTOCOL

- 1. Create template geometry Smooth, high quality mesh with desired number of vertices
- 2. Acquire subject-specific geometries Segmented from clinical images with aliasing
- 3. Iterative Closest Point (ICP) Analysis to translate and rotate subject geometries to the template
- 4. Run Deformetrica Fits the template shape to all subject shapes simultaneously
- Evaluate quality of fit Iterate step 4 until
   Deformetrica settings yield representative smoothed shapes

# ASSESSMENT OF QUALITY OF FIT

truth

- Template shape generation
- 24 high-resolution CT pelvic scans
- All fitted with the same mesh
- Average pelvis was generated
- Ground truth shape generation
- Created from one high-definition CT pelvic scan
- Aliased shape generation
  - 6 different amounts of data removed to simulate aliasing
- 50%, 33%, 25%, 20%, 17%, and 14% of the original data kept

**Template** 



At least 90% of distances < 2.5 mm</li>

Assessment of fits to ground

and the original pelvis using

Deformetrica

Success criteria:

Smoothed all 6 "aliased" pelvises

Compared the point-to-point and

pelvis to the ground truth shape

Average point-to-point distance < 1.5 mm</li>

surface-to-surface distances of each

Houd

Houding

14% Aliased Pelvis (the most data removed)

# RESULTS: SURFACE-TO-SURFACE FIT



Animation comparing the template fit to the ground truth. Wireframe represents the 14% aliased pelvis. Colormap represents relative distance to the ground truth. Red is > 2 mm, white is < 1 mm, and blue is ≈ 0 mm.

## RESULTS





Table of Relevant Comparison Values for all Shapes

| Degree of Aliasing | Average<br>Distance (mm) | Max<br>Distance (mm) | Percent Below 2.5 (% of total vertices) |
|--------------------|--------------------------|----------------------|-----------------------------------------|
| 50%                | 0.55                     | 6.24                 | 98.0                                    |
| 33%                | 0.55                     | 6.47                 | 98.4                                    |
| 25%                | 0.50                     | 5.86                 | 98.4                                    |
| 20%                | 0.61                     | 6.90                 | 97.7                                    |
| 17%                | 0.71                     | 7.04                 | 97.4                                    |
| 14%                | 0.79                     | 7.64                 | 96.0                                    |

# DISCUSSION

- Approach is robust for large degree of aliasing
  - Data can be improved further using more detailed template
  - Allows for use of previously unusable image sets in shape modeling and finite element studies
- Pelvis chosen for geometric complexity
  - Future work will look at other bones and soft tissues
- Still large computational time
  - However, frees individual from time doing manual smoothing

#### **ACKNOWLEDGMENTS**

We would like to thank the CRC for allowing the use of the supercomputing cluster and for creating the ARC conference

#### REFERENCES

Lange C et al. Anisotropic smoothing of point sets. Computer Aided Geometric Design.; 2005.
 He ZC, et al. An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech. 2013.

3. Bône A, et al. Deformetrica 4: An Open-Source Software for Statistical Shape Analysis. In: Lecture Notes in Computer Science. 2018.