
Intel Compilers
Igor Vorobtsov, Technical Consulting Engineer

2
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2

Agenda

▪ Key Updates

▪ Common Optimizations

• High-Level Optimizations

• InterProcedural Optimizations

• Profile-Guided Optimizations

• Vectorization

• Auto-Parallelization

• FP model

▪ New Compilers

• What Is Data Parallel C++?

• Intel® Compilers for OpenMP

Let’s Get Started!

Key Updates

4

Key Knowledge for Intel® Compilers Going Forward

• New Underlying Back End Compilation Technology based on LLVM

• New compiler technology available in BETA today in oneAPI Beta
for DPC++, C++ and Fortran

• Existing Intel proprietary “IL0” (ICC, IFORT) Compilation Technology
compilers provided alongside new compilers

• CHOICE! Continuity!

• BUT Offload (DPC++ or OpenMP TARGET) supported only with new
LLVM-based compilers

5

C++ New Features – ICX

▪What is this?

• Close collaboration with Clang*/LLVM* community

• ICX is Clang front-end (FE), LLVM infrastructure

• PLUS Intel proprietary optimizations and code generation

• Clang FE pulled down frequently from open source, kept current

• Always up to date in ICX

• We contribute! Pushing enhancements to both Clang and LLVM

• Enhancements working with community – better vectorization, opt-
report, for example

Intel Confidential 5

6

Packaging of Compilers

▪ Parallel Studio XE 2020 Production Compiler for Today

• Drivers: icc, icpc, ifort

• v19.1 Compiler versions; 19.1 branch

▪ oneAPI Base Toolkit(BETA) PLUS oneAPI HPC Toolkit(BETA)

• Existing IL0 compilers ICC, ICPC, IFORT in HPC Toolkit

• v2021.1 code base for IL0 compilers

• ADDED! New compilers based on LLVM* framework

• Drivers: icx, ifx and dpcpp

• v2021.1 code base for LLVM-based compilers

Let’s Get Started!

Common Optimizations
icc/ifort

8
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

8

What’s New for Intel compilers 19.1?
icc/ifort

Advance Support for Intel® Architecture – Use Intel compiler to generate optimized code for Intel Atom®
processor through Intel® Xeon® Scalable processor families

Achieve Superior Parallel Performance – Vectorize & thread your code (using OpenMP*) to take full
advantage of the latest SIMD-enabled hardware, including Intel® Advanced Vector Extensions 512 (Intel®
AVX-512)

What’s New in Fortran
Substantial Fortran 2018 support
▪ Enjoy enhanced C-interoperability features for effective mixed language

development

▪ Use advanced coarray features to parallelize your modern Fortran code

Initial OpenMP* 5.0, and substantial OpenMP* 4.5
support
▪ Customize your reduction operations by user-defined reductions

What’s New in C++
Initial C++20, and full C++ 17 enabled
▪ Enjoy advanced lambda and constant expression support

▪ Standards-driven parallelization for C++ developers

Initial OpenMP* 5.0, and full OpenMP* 4.5
support
▪ Modernize your code by using the latest parallelization

specifications

9
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

9
Intel® C++ Compiler Boosts Application Performance on Linux*

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. Performance results are based on testing as of Aug. 26, 2019 and may not reflect all
publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized. for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Configuration: Testing by Intel as of Aug. 26, 2019. Linux hardware: Intel® Xeon® Platinum 8180 CPU @ 2.50GHz, 384 GB RAM, HyperThreading is on. Software: Intel® C++ Compiler 19.1, GCC 9.1.0. Clang/LLVM 9.0. Linux OS: Red Hat* Enterprise Linux Server release 7.4
(Maipo), 3.10.0-693.el7.x86_64. SPEC* Benchmark (www.spec.org). SPECint®_rate_base_2017 compiler switches: qkmalloc was used for Intel C++ Compiler 19.1 SPECint rate test, jemalloc 5.0.1 was used for GCC and Clang/LLVM SPECint rate test. Intel® C Compiler / Intel
C++ Compiler 19.1: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4. GCC 9.1.0 -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops -flto. Clang 9.0: -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops –flto. SPECfp®_rate_base_2017 compiler
switches: jemalloc 5.0.1 was used for Intel C++ Compiler 19.1, GCC and Clang/LLVM SPECfp rate test. Intel C/C++ compiler 19.1: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4. GCC 9.1.0: -march=skylake-avx512 -
mfpmath=sse -Ofast -fno-associative-math -funroll-loops -flto. Clang 9.0: -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops –flto. SPECint®_speed_base_2017 compiler switches: Intel C Compiler / Intel C++ Compiler 19.1: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-
mem-layout-trans=4 -qopenmp. GCC 9.1.0: -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops -flto -fopenmp. Clang 9.0: -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops -flto -fopenmp=libomp. SPECfp®_speed_base_2017 compiler switches: Intel C
Compiler / Intel C++ Compiler 19.1: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopenmp. GCC 9.1.0: -march=skylake-avx512 -mfpmath=sse -Ofast -fno-associative-math -funroll-loops -flto -fopenmp. Clang 9.0: -march=skylake-avx512 -mfpmath=sse
-Ofast -funroll-loops -flto -fopenmp=libomp. compiler switches: jemalloc 5.0.1 was used for Intel C++ Compiler 19.0 update 4, GCC and Clang/LLVM SPECfp rate test. Intel C/C++ compiler 19.1:-.

Estimated geometric mean of SPEC* CPU2017 Estimated SPECint®_rate_base2017

Floating Point RATE BASE C/C++ benchmarks

Floating Point

Estimated geometric mean of SPEC* CPU2017 Estimated SPECint®_speed_base2017

Floating Point SPEED BASE C/C++ benchmarks

Relative geomean performance (FP Rate Base and FP Speed Base; higher is better)

1,34

1 1

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

Intel C++ 19.1 GCC 9.1 LLVM 9.0

SpecInt Rate
1,23

1,02 1,00

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Intel C++ 19.1 GCC 9.1 LLVM 9.0

SpecInt Speed

1,24

1 1,02

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Intel C++ 19.1 GCC 9.1 LLVM 9.0

SpecFP Speed

1,19

1,00 1,00

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

Intel C++

19.1

GCC 9.1 LLVM 9.0

SpecFP Rate

Integer Floating Point Integer

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effect iveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

10
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Fortran Compiler Boosts Application Performance on Linux*

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. Performance results are based on testing as of Dec. 12, 2019 and may not
reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such
as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configuration: Testing by Intel as of Dec. 12, 2019. Hardware: Intel® Core™ i7-6700 CPU @ 3.40GHz, HyperThreading is on. RAM 8G. Software: Intel® Fortran Compiler 19.1, PGI Fortran* 19.1, Open64* 4.6.2, gFortran* 9.2.0. Red Hat Enterprise Linux Server release 7.4
(Maipo), Kernel 3.10.0-693.11.6.el7.x86_64 Polyhedron Fortran Benchmark (www.fortran.uk). Linux compiler switches: Auto-parallel: Gfortran:gfortran -Ofast -mfpmath=sse -flto -march=skylake -funroll-loops -ftree-parallelize-loops=8. Intel Fortran compiler: -fast -parallel -
xCORE-AVX2 -nostandard-realloc-lhs. PGI Fortran: pgf95 -fast -Mipa=fast,inline -Msmartalloc -Mfprelaxed -Mstack_arrays -Mconcur –mp=bind. Open64: openf95 -march=auto -Ofast -mso -apo. Non-auto parallel (NP): ifort -fast -xCORE-AVX2 -nostandard-realloc-lhs.
open64:openf95 -march=auto -Ofast -mso. gcc: gfortran -Ofast -mfpmath=sse -flto -march=native -funroll-loops. pgi: pgf95 -fast -Mipa=fast,inline -Msmartalloc -Mfprelaxed -Mstack_arrays. aocc: flang -flto -Wl,-mllvm -Wl,-function-specialize -Wl,-mllvm -Wl,-region-vectorize -
Wl,-mllvm -Wl,-reduce-array-computations=3 -ffast-math -Wl,-mllvm -Wl,-inline-recursion=4 -Wl,-mllvm -Wl,-lsr-in-nested-loop -Wl,-mllvm -Wl,-enable-iv-split -O3 -flto -march=znver2 -funroll-loops -Mrecursive -mllvm -vector-library=LIBMVEC -z muldefs -lamdlibm -lflang
-lamdlibm -lm

Polyhedron* Benchmark

Estimated relative geomean performance - higher is better

2.38X

1,717

1,1242
1 1,012

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

iFort 19.1 gfortran9.2.0 open64 4.5.2 PGI 19.1

Auto-parallel

1,49

1,21

1,07
1

1,13

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

iFort 19.1 NP gfortran NP AOCC 2 NP open64 4.6.2 NP PGI 19.1 NP

Non-auto parallel

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effect iveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

11
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

11

Common optimization options
Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen

-prof-use

Optimize for speed across the entire program (“prototype switch”)

fast options definitions changes over time!

-fast
same as:
-ipo –O3 -no-prec-div –static –fp-model fast=2 -xHost)

OpenMP support -qopenmp

Automatic parallelization -parallel

https://tinyurl.com/icc-user-guide

https://tinyurl.com/icc-user-guide

12
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

12

High-Level Optimizations
Basic Optimizations with icc -O…

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations
excludes optimizations tending to increase code size

-O2 default for icc/icpc (except with -g)
includes auto-vectorization; some loop transformations, e.g. unrolling, loop interchange;
inlining within source file;
start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations
including cache blocking, loop fusion, prefetching, …
suited to applications with loops that do many floating-point calculations or process large data sets

13
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

13

InterProcedural Optimizations (IPO)
Multi-pass Optimization

icc -ipo

Analysis and optimization across function and/or source file boundaries, e.g.

▪ Function inlining; constant propagation; dependency analysis; data & code layout; etc.

2-step process:

▪ Compile phase – objects contain intermediate representation

▪ “Link” phase – compile and optimize over all such objects

▪ Seamless: linker automatically detects objects built with -ipo and their compile options

▪ May increase build-time and binary size

▪ But build can be parallelized with -ipo=n

▪ Entire program need not be built with IPO, just hot modules

Particularly effective for applications with many smaller functions

Get report on inlined functions with -qopt-report-phase=ipo

14
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

14

InterProcedural Optimizations
Extends optimizations across file boundaries

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO

Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

15
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

15

Profile-Guided Optimizations (PGO)
▪ Static analysis leaves many questions open for the optimizer like:

• How often is x > y

• What is the size of count

• Which code is touched how often

▪ Use execution-time feedback to guide (final) optimization

▪ Enhancements with PGO:

• More accurate branch prediction

• Basic block movement to improve instruction cache behavior

• Better decision of functions to inline (help IPO)

• Can optimize function ordering

• Switch-statement optimization

• Better vectorization decisions

if (x > y)

do_this();

else

do that();

for(i=0; i<count; ++i)

do_work();

Compile sources
with the prof-gen

option

Run the
Instrumented

Executable

(one or more times)

Compile with
prof-use option

16
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

16

PGO Usage: Three-Step Process

Compile + link to add instrumentation

icc –prof-gen prog.c –o prog

Execute instrumented program

./prog (on a typical dataset)

Compile + link using feedback

icc –prof-use prog.c –o prog

Dynamic profile:
12345678.dyn

Instrumented
executable:

prog

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
prog

17
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

17

Math Libraries

▪ icc comes with Intel’s optimized math libraries

▪ libimf (scalar) and libsvml (scalar & vector)

▪ Faster than GNU* libm

▪ Driver links libimf automatically, ahead of libm

▪ Additional functions (replace math.h by mathimf.h)

▪Don’t link to libm explicitly! -lm

▪ May give you the slower libm functions instead

▪ Though the Intel driver may try to prevent this

▪ gcc needs -lm, so it is often found in old makefiles

18
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

18

SIMD Types for Intel® Architecture

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

AVX
Vector size: 256 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 4, 8, 16, 32

Intel® AVX-512

Vector size: 512 bit
Data types:

• 8, 16, 32, 64 bit integer

• 32 and 64 bit float

VL: 8, 16, 32, 64

19

❑ Scalar mode
– one instruction produces

one result

– E.g. vaddss, (vaddsd)

❑ Vector (SIMD) mode
– one instruction can produce

multiple results

– E.g. vaddps, (vaddpd)

+
X

Y

X + Y

+
X

Y

X + Y

= =
x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

8 doubles for AVX-512

for (i=0; i<n; i++) z[i] = x[i] + y[i];

SIMD: Single Instruction, Multiple Data

20
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

20

Many ways to vectorize

21
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

21

Basic Vectorization Switches I

-x<code>

▪ Might enable Intel processor specific optimizations

▪ Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

<code> indicates a feature set that compiler may target (including instruction sets and
optimizations)

▪ Microarchitecture code names: BROADWELL, HASWELL, IVYBRIDGE, KNL, KNM,
SANDYBRIDGE, SILVERMONT, SKYLAKE, SKYLAKE-AVX512

▪ SIMD extensions: CORE-AVX512, CORE-AVX2, CORE-AVX-I, AVX, SSE4.2, etc.

▪ Example: icc -xCORE-AVX2 test.c

ifort –xSKYLAKE test.f90

22
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

22

Basic Vectorization Switches II
-ax<code>

• Multiple code paths: baseline and optimized/processor-specific

• Optimized code paths for Intel processors defined by <code>

• Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

• Baseline code path defaults to –msse2 (/arch:sse2)

• The baseline code path can be modified by –m<code> or –x<code>

• Example: icc -axCORE-AVX512 -xAVX test.c

icc -axCORE-AVX2,CORE-AVX512 test.c

-m<code>

▪ No check and no specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

▪ Missing check can cause application to fail in case extension not available

▪ -xHost

23
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

23

Compiler Reports – Optimization Report
▪ -qopt-report[=n]: tells the compiler to generate an optimization report

n: (Optional) Indicates the level of detail in the report. You can specify values 0 through 5. If you
specify zero, no report is generated. For levels n=1 through n=5, each level includes all the
information of the previous level, as well as potentially some additional information. Level 5
produces the greatest level of detail. If you do not specify n, the default is level 2, which produces a
medium level of detail.

▪ -qopt-report-phase[=list]: specifies one or more optimizer phases for which
optimization reports are generated.
loop: the phase for loop nest optimization

vec: the phase for vectorization

par: the phase for auto-parallelization

all: all optimizer phases

▪ -qopt-report-filter=string: specified the indicated parts of your application, and
generate optimization reports for those parts of your application.

24
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2
4

Optimization Report – An Example
$ icc -c -xcommon-avx512 -qopt-report=3 -qopt-report-phase=loop,vec foo.c

Creates foo.optrpt summarizing which optimizations the compiler performed or tried to perform.
Level of detail from 0 (no report) to 5 (maximum).
-qopt-report-phase=loop,vec asks for a report on vectorization and loop optimizations only
Extracts:

LOOP BEGIN at foo.c(4,3)
Multiversioned v1

remark #25228: Loop multiversioned for Data Dependence…
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….

LOOP END

LOOP BEGIN at foo.c(4,3)
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);
}

25
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2
5

Optimization Report – An Example
$ icc -c -xcommon-avx512 -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -
fargument-noalias foo.c
…

LOOP BEGIN at foo.c(4,3)
…

remark #15417: vectorization support: number of FP up converts: single precision to double precision 1
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 111
remark #15477: vector cost: 10.310
remark #15478: estimated potential speedup: 10.740
remark #15482: vectorized math library calls: 1
remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);
}

report to stderr
instead of foo.optrpt

26
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2
6

Optimization Report – An Example
$ icc -S -xcommon-avx512 -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -
fargument-noalias foo.c
LOOP BEGIN at foo2.c(4,3)
…
remark #15305: vectorization support: vector length 32
remark #15300: LOOP WAS VECTORIZED

remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 109
remark #15477: vector cost: 5.250
remark #15478: estimated potential speedup: 20.700
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END

$ grep sin foo.s
call __svml_sinf16_b3

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 512; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

27
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

27

Auto-Parallelization

▪ Based on OpenMP* runtime

▪ Compiler automatically translates loops into equivalent multithreaded code with using this
option:

-parallel

▪ The auto-parallelizer detects simply structured loops that may be safely executed in parallel,
and automatically generates multi-threaded code for these loops.

▪ The auto-parallelizer report can provide information about program sections that were
parallelized by the compiler. Compiler switch:

-qopt-report-phase=par

28
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

28

The -fp-model switch
-fp-model
▪ fast [=1] allows value-unsafe optimizations (default)

▪ fast=2 allows a few additional approximations

▪ precise value-safe optimizations only

▪ source | double | extended imply “precise” unless overridde

▪ except enable floating-point exception semantics

▪ strict precise + except + disable fma +
don’t assume default floating-point environment

▪ consistent most reproducible results between different
processor types and optimization options

-fp-model precise -fp-model source
▪ recommended for best reproducibility

▪ also for ANSI/ IEEE standards compliance, C++ & Fortran

▪ “source” is default with “precise” on Intel 64

29
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

29

Looking for best compiler options?
It depends!
▪ workload, hw, OS, compiler version, memory allocation, etc.
▪ take a look on benchmark results and options for reference:

SPECint®_rate_base_2017

-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4

SPECfp®_rate_base_2017

-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4

SPECint®_speed_base_2017

-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4 -qopenmp

SPECfp®_speed_base_2017

-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopenmp

Let’s Get Started!

New compilers
icx/ifx/dpcpp

31

Intel® Compilers – Target & Packaging

Intel Compiler Target
OpenMP
Support

OpenMP
Offload
Support

Current
Status

(Sep 2020)

Release
Q4’20

Included in
oneAPI
Toolkit

Intel® C++ Compiler, IL0 (icc) CPU Yes No
Production**

+ Beta
Production HPC

Intel® oneAPI DPC++/C++
Compiler (dpcpp)

CPU,
GPU,

FPGA*
No No Beta Production Base

Intel® oneAPI DPC++/C++
Compiler (ICX)

CPU
GPU*

Yes Yes Beta Production
Base and

HPC

Intel® Fortran Compiler, IL0
(ifort)

CPU Yes No
Production**

+ Beta
Production HPC

Intel® Fortran Compiler (ifx)
CPU,
GPU*

Yes Yes Beta Beta*** HPC

Cross Compiler Binary Compatible and Linkable!
*Intel® Platforms
**PSXE 2020 Production+oneAPI HPC Toolkit(BETA)
*** IFX will remain in BETA in 2021

32
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What is Data Parallel C++?

The language is:

C++

+
SYCL*

+
Additional Features

khronos.org/sycl/

Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

tinyurl.com/dpcpp-ext

https://www.khronos.org/sycl/
https://tinyurl.com/dpcpp-ext

33
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The implementation is:

Clang

+

LLVM

+
Runtime

https://github.com/intel/llvm

https://github.com/intel/compute-runtime

Code samples:

tinyurl.com/dpcpp-tests

tinyurl.com/oneapi-samples

What is Data Parallel C++?

https://github.com/intel/llvm
https://github.com/intel/compute-runtime
https://tinyurl.com/dpcpp-tests
https://tinyurl.com/oneapi-samples

34
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++ extensions
tinyurl.com/sycl2020

Extension Purpose SYCL 2020

USM (Unified Shared Memory) Pointer-based programming ✓

Sub-groups Cross-lane operations ✓

Reductions Efficient parallel primitives ✓

Work-group collectives Efficient parallel primitives ✓

Pipes Spatial data flow support

Argument restrict Optimization

Optional lambda name for kernels Simplification ✓

In-order queues Simplification ✓

Class template argument
deduction and simplification

Simplification ✓

tinyurl.com/dpcpp-ext

https://tinyurl.com/sycl2020
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroup/SYCL_INTEL_sub_group.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/Reduction/Reduction.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/GroupAlgorithms/SYCL_INTEL_group_algorithms.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/DataFlowPipes/data_flow_pipes.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/KernelRestrictAll/SYCL_INTEL_kernel_restrict_all.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/UnnamedKernelLambda/SYCL_INTEL_unnamed_kernel_lambda.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/OrderedQueue/OrderedQueue_v2.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/deduction_guides/SYCL_INTEL_deduction_guides.asciidoc
https://tinyurl.com/dpcpp-ext

35

IFX (Beta) Status, Setting Expectations

• Today and at GOLD end of 2020 will remain in BETA as it matures

• IFX CORE Fortran LANGUAGE

• F77, F90/95, a good subset of F03

• Use -stand f03 if you want warnings for features not in F2003

• Use -stand f03 –warn errors options to abort if any F08 or above detected.

• Much work needed in 2021 and beyond to implement rest of F03, then F08, then F18

• IFX OpenMP Support

• CPU OpenMP 3.x clauses mostly work

• OFFLOAD: Small subset of offload – simple arrays, simple OpenMP TARGET MAP directives

• Much work needed in 2021 and beyond to implement OpenMP offload

36

Fortran Strategy for Offload TODAY

• Utilize binary interoperability

• Core language CPU:

• ifx to compile offload code, ifx for <= F03,

• ifort for anything not compiling w/ IFX

• link with ifx: offload needs ifx link

• OpenMP CPU: ifort or ifx for OpenMP cpu constructs

• OpenMP GPU TARGET offload:

• ifx OMP5 offload or

• ifx or ifort calling into C/C++ for OMP offload or DPCPP

37

Choices: ICX and ICC Classic

• Choice of ICC or ICX in oneAPI products

• ICC for performance for CPU targets

• ICX for offload and porting for future, or if you prefer superior Clang C++ language checking

• ICX also available (with no offload) in PSXE 2020 via “icc -qnextgen”

• ICX used as basis for DPC++ Compiler

• DPC++ extensions added, driver ‘dpcpp’ used instead of ‘icx/icc/icpc’

• ICX is needed for OpenMP 5 TARGET offload to Intel GPU targets

• ICC Classic will not have OMP offload to GPUs

37

38
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

▪ Drivers

• icx (C/C++) ifx (Fortran)

▪ OPTIONS

-fiopenmp

• Selects Intel Optimized OMP

• -fopenmp for Clang* O.S. OMP

• -qopenmp NO!! rejected, only in ICC/IFORT

-fopenmp-targets=spir64

• Needed for OMP Offload

• Generates SPIRV code fat binary for offload kernels

OpenMP with Intel® Compilers

tinyurl.com/intel-openmp-offloadGet Started with OpenMP* Offload Feature to GPU:

https://tinyurl.com/intel-openmp-offload

39

Intel env Var LIBOMPTARGET_PROFILE

▪OpenMP Standard ENV vars are accepted. Add to this list …

▪ export LIBOMPTARGET_PROFILE=T

• performance profiling for tracking on GPU kernel start/complete time and
data-transfer time.

GPU Performance (Gen9, export LIBOMPTARGET_PROFILE=T,usec)

… …

Kernel Name:

__omp_offloading_811_29cbc383__ZN12BlackScholesIdE12execute_partEiii_l368

iteration #0 ...

calling validate ... ok

calling close ...

execution finished in 1134.914ms, total time 0.045min

passed

LIBOMPTARGET_PROFILE:

-- DATA-READ: 16585.256 usec

-- DATA-WRITE: 9980.499 usec

-- EXEC-__omp_offloading_811_29cbc383__ZN12BlackScholesIfE12execute_partEiii_l368:

24048.503 usec

40

Debug RT env Var LIBOMPTARGET_DEBUG
▪ Export LIBOMPTARGET_DEBUG=1

• Dumps offloading runtime debugging information. Its default value is 0 which
indicates no offloading runtime debugging information dump.

./matmul

Libomptarget --> Loading RTLs...

Libomptarget --> Loading library 'libomptarget.rtl.nios2.so'...

Libomptarget --> Loading library 'libomptarget.rtl.x86_64.so'...

Libomptarget --> Successfully loaded library 'libomptarget.rtl.x86_64.so'!

Libomptarget --> Loading library 'libomptarget.rtl.opencl.so'...

Target OPENCL RTL --> Start initializing OpenCL

Target OPENCL RTL --> cl platform version is OpenCL 2.1 LINUX

Target OPENCL RTL --> Found 1 OpenCL devices

Target OPENCL RTL --> Device#0: Genuine Intel(R) CPU 0000 @ 3.00GHz

…. AND MUCH MORE …

41

QUESTIONS?

42
Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Notices & Disclaimers
▪ This document contains information on products, services and/or processes in development. All information provided here is subject to change

without notice.

▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at intel.com, or from the OEM or retailer.

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such
as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or
its subsidiaries in the U.S. and other countries. Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

43

