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Ab initio calculations

Computing properties of materials from first principles

- energies
- structures
- relative stabilities of conformers of phases
- mechanical, magnetic and optical properties
- evolution with time
- chemical reactivity
- how different systems interact

First-principles (or ab initio) means that we try to compute these
properties using the laws of quantum mechanics with no  
experimental or empirical parameters



Density-functional theory (DFT)

DFT is one of the most popular approaches to study the electronic 
structure and dynamics of molecules and complex materials

It is widely used in chemistry, condensed matter physics, materials science 
and engineering

It is usually considered an ab initio (or first-principles) method, because it 
attempts to solve Schrödinger’s equation without using empirical 
parameters

In practice, DFT calculations involve at least one approximation, the 
exchange-correlation functional

Choosing the correct functional is the essential component of all DFT 
calculations



Overview

1. Introduction to DFT
Hartree-Fock theory, correlation, Hohenberg-Kohn theorem, orbital-free DFT, 
the Kohn-Sham equations, the exchange correlation functional, limits of DFT

2. Modelling extended systems
The crystal lattice, periodic boundary conditions, real and reciprocal space, 
Bloch’s theorem, the Brillouin zone

3. Basis sets and software
DFT with computers, local and floating basis sets, their strengths and 
limitations, a practical example
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Atoms, molecules and crystals

Atom = nucleus + electrons

tyrosine

cytochrome c oxidase

NaCl a metal



Atoms, molecules and crystals

Atom = nucleus + electrons

tyrosine

cytochrome c oxidase

NaCl a metal

Time-dependent Schrödinger equation



Born-Oppenheimer approximation

The nuclei are generally easy to treat, as they move slowly compared to 
the electrons and can be considered classical point charges

The nuclei are treated as unmovable classical point 
charges, providing a potenZal that constrains the moZon
of the electrons 

(BO versus adiabaZc approximaZon)



Electron interactions

The nuclei are generally easy to treat, as they move slowly compared to 
the electrons and can be considered classical point charges

Electrons interact:
- classically (as moving negative point charges)
- quantum mechanically (as fermions) 

This leads to the appearance of exchange and
correlation effects in their distribution



Schrödinger equation



Hartree-Fock



Hartree-Fock: the quantum nature of the electrons

An ensemble of N interacting electrons is described by a many-body 
wavefunction 
                                                     𝛹(1, 2, …, N).

Electrons obey the Fermi-Dirac statistics (anti-symmetry): 

                                        𝛹(2, 1, …, N) = -𝛹(1, 2, …, N).

The HF method accounts for anti-symmetry exactly using a model 
approximate wavefunction 𝛷, called Slater determinant 

One-electron orbitals



The Hartree-Fock method

H 𝚿= E 𝚿 Schrödinger’s equation (in BOA)

Slater determinant

Hamiltonian operator

E = total energy
𝚿 = wave-function

Solution: Vary 𝜙i until E is a minimum



Hartree-Fock: total energy

E = < 𝚿| H | 𝚿 >

Dirac’s notation



Hartree-Fock: the Coulomb interaction

An electron i moves within the average Coulomb field J created by the 
other electrons and within their exchange field K

Hartree-Fock = independent electrons moving in a mean field

∬dr dr’ 𝜌i(r) 𝜌j(r’) 
Coulomb repulsion 
between electron i 
and electron j



Hartree-Fock: the exchange interaction

An electron i moves within the average Coulomb field J created by the 
other electrons and within their exchange field K

Hartree-Fock = independent electrons moving in a mean field

Exchange interaction between 
electron i and electron j



Mean-field approximation

i



Mean-field approximation

i

J-K

Instantaneous correlation in the motion of the 
electrons is neglected



Electronic correlaIon
Correlation in the electron motion: the probability of finding one 
electron at a given position is not independent of the positions of the 
other electrons

Dynamical correlation
Electrons tend to avoid each other as they move

Non-dynamical (static) correlation
Degenerate states influence the motion of the electrons

Hartree-Fock: exchange is exact, but there is no correlation; one needs 
post-Hartree-Fock methods (MP2, CI, CC, etc.) to account for correlation

DFT: exchange and (dynamical) correlation are approximated in practice



Hartree-Fock



Density-functional theory



DFT versus wavefunction theory
Unlike Hartree-Fock, DFT does not attempt to propose an Ansatz for the 
wavefunction

There is no many-body wavefunction in DFT

DFT is based on the assumption (justified by a rigorous theorem) that all 
information about electron interactions can be obtained from the 
electron density alone 

The electron density is a simple and real function of x, y and z only, and 
it can be observed experimentally 

The total energy of a system of nuclei and electrons is a unique 
functional of the electron density



Density-functional theory
Hohenberg-Kohn theorems

In quantum mechanics, the electron density is given by the square modulus of
the wavefunction integrated over the coordinates of N � 1 electrons:

⇢(r) =
Z

| (r1, r2, . . . , rN)|2dr2 . . . drN

The electronic Hamiltonian is

H = �1
2

NelecX

i=1

r2
i �

NnucleiX

a=1

NelecX

i=1

Za

|Ra � ri |
+

NelecX

i=1

NelecX

j>i

1
|ri � rj |

+
NnucleiX

a=1

NnucleiX

b>a

ZaZb

|Ra � Rb|

The Hamiltonian is completely determined by the number of electrons and by
the electron-nuclei potential, i.e. the positions of the nuclei and their charges
(in the BO approximation, the last term on the rhs is a constant).

Experimentally, electron density maps can also be 
obtained using X-ray (or neutron) crystallography 

The electron density is a real function in 3D space

The electron density



Density-functional theory
Hohenberg-Kohn theorems

In quantum mechanics, the electron density is given by the square modulus of
the wavefunction integrated over the coordinates of N � 1 electrons:

⇢(r) =
Z

| (r1, r2, . . . , rN)|2dr2 . . . drN

The electronic Hamiltonian is

H = �1
2
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The Hamiltonian is completely determined by the number of electrons and by
the electron-nuclei potential, i.e. the positions of the nuclei and their charges
(in the BO approximation, the last term on the rhs is a constant).

The Hohenberg-Kohn theorems

External potential: vext(r)

I: For a non-degenerate ground state, the external potential is 
a unique functional of the electron density; the total energy is 
therefore a unique functional of the electron density

II: The ground state electron density minimizes the total 
energy



Density-functional theory
Hohenberg-Kohn theorem I

Assume that two di↵erent external potentials Vext and V 0
ext (describing the

electron-nuclei interaction plus possibly other perturbations) result in the same
electron density ⇢.

Since there are two potentials, there are also two di↵erent Hamiltonians H and
H 0. Their respective mimimum-energy wavefunctions are  and  0 are also
di↵erent.

If we now take  0 as an approximate wavefunction for H, we obtain, from the
variational principle that

h 0|H| 0i > E0

h 0|H| 0i+ h 0|H � H 0| 0i > E0

E 0
0 + h 0|Vext � V 0

ext| 0i > E0

E 0
0 +

Z
⇢(r)(Vext � V 0

ext)dr > E0

Walter Kohn (1923-2016)

Reductio ad absurdum



Density-functional theory
Hohenberg-Kohn theorem I

Similarly, if we take  as an approximate wavefunction for H 0, we get

E0 �
Z

⇢(r)(Vext � V 0
ext)dr > E 0

0

If we sum the two inequalities, we get that E 0
0 + E0 > E 0

0 + E0, which means
that the assumption is wrong.

For the ground state, there is a one-to-one correspondence between the
electron density and the nuclear potential, and therefore the total energy.

The energy is a unique functional of the electron density, E ⌘ E [⇢].

Note:
A function is a rule that, given a number, returns a number.
A functional is a rule that, given a function, returns a number.



Density-functional theory
Hohenberg-Kohn theorem II

Given an approximate electron density ⇢0 that integrates to the number of
electrons, Z

⇢(r)dr = Nelec,

the energy of this density is larger or equal to the exact ground state energy

E0[⇢
0] � E0[⇢]

This theorem is the DFT version of the variation principle for wavefunctions of
quantum mechanics.



Density-functional theory
“Intuitive proof” of DFT (EB Wilson, 1965)

The electron density uniquely determines the positions and charges of the
nuclei and therefore the Hamiltonian. This observation is based on the fact
that the electron density has a cusp at the nucleus, i.e.

Za = � 1
2⇢(0)

h@⇢(ra)
@ra

i

ra=0

where ⇢(r) is the spherically averaged electron density. A careful examination
of the electron density therefore uniquely determines the external potential and
the Hamiltonian.

X-ray crystallography



Density-functional theory
The kinetic energy and exchange-correlation problems

In principle, the HK theorem II can be used to determine the ground state
electron density. We need to know explicitly E [⇢], then vary ⇢ until the energy
is minimised. In the BO approximation, E [⇢] can be decomposed into kinetic
energy, nuclei-electron attraction and electron-electron repulsion terms,

E [⇢] = T [⇢] + Ene[⇢] + Eee[⇢].

The e-e repulsion can be decomposed into a Coulomb (J[⇢]) and an exchange
(K [⇢]) part. We can compute Ene[⇢] and J[⇢] easily:

Ene[⇢] = �
NnucleiX

a

Z
Za⇢(r)
|Ra � r|

J[⇢] =
1
2

Z Z
⇢(r)⇢(r0)
|r � r0| drdr0

T [⇢] and K [⇢] however remain unknown, and they have to be modelled.
This is very di�cult to do, especially for T [⇢].

=) “orbital-free” DFT



Orbital-free DFT

                          Homogeneous electron gas

Thomas-Fermi kinetic energy functional (1927)

Does not include the exchange-energy, which can be added using a formula derived by 
Dirac (Thomas-Fermi-Dirac functional). Too inaccurate for most applications.

Von Weizsäcker correction (1935)

Other corrections can be applied to the TF-W functional.



Orbital-free DFT

Current KE functionals are typically too inaccurate for general applications. OF 
DFT can however work well when the deviation of 𝜌(r) from the HEG is small. 
It is computationally far less demanding than “standard” DFT.

                                                             Al solid-liquid interface
                                                             BJ Jesson and PA Madden, JCP 113, 5935 (2000)

                                                             Ab initio molecular dynamics with OF DFT
                                                                       1062 atoms per cell, 9 ps statistical averages 
                                                             
                                                            
                                                             CONUNDrum: A program for orbital-free density
                                                                       functional theory calculations
                                                                       P Golub and S Manzhos, Comp. Phys. Comm. 256,
                                                                       107365 (2020)



Orbital-free DFT

                                        

Kohn-Sham DFT

𝜌(r) E[𝜌]T

𝝓i(r) S
𝜌(r) E[𝝓i]

Interacting electrons

Independent electrons



Density-functional theory
Kohn-Sham theory

The idea of the KS formalism is to split the kinetic energy functional into a
part that can be calculated exactly and a small correction term. This is done
by introducing a set of orbitals representing a fictitious ensemble of
non-interacting electrons.

The kinetic energy can then be computed for the non-interacting electrons

TS = �1
2

NelecX

i=1

h�i |r2|�i i

The orbitals are required to reconstruct the electron density

⇢(r) =
NelecX

i=1

|�i (r)|2



Density-functional theory
The exchange-correlation functional

The KS energy functional is then written as

E [⇢] = TS + Ene[⇢] + Eee[⇢] + Exc[⇢]

Exc[⇢] (the so called exchange-correlation functional) contains the component
of the kinetic energy not accounted for by TS, K [⇢] and any correlation
contribution in the electron dynamics.

Exc[⇢] is in general unknown and it has to be approximated. The di↵erence
between di↵erent DFT methods is in the choice of Exc.

It can be proved that Exc is a universal functional, valid for all systems.

It is costumary to decompose Exc into an exchange Ex and a correlation Ec

component. However, only Exc has a physical meaning.

c



Why does Kohn-Sham DFT work?

                                        

RO Jones and O Gunnarsson,
Rev. Mod. Phys. 61, 689 (1989)

EneEee ExcTs
C



The Kohn-Sham equations

                                        

A set of one-particle eigenvalue equations, with the one-particle 
wavefunctions giving the total electron density.  

These are the equations that all DFT codes solve, a way or another.

However, we still need an expression for Exc.
 

W Kohn and LJ Sham,
Phys. Rev. 140, A-1133 (1965)



Density-functional theory
Properties of the exact Exc

(1) Self-interaction free (most commonly used functionals are not SI free -
there are ways to correct KS DFT for the self interaction).

(2) For constant densities, the uniform electron gas Exc (which is known)
should be recovered. This is especially important in solid state systems.

(3) Ex should scale linearly with the density: ⇢ ! �⇢ =) Ex[⇢] = �Ex[⇢].

(4) Scaling ⇢ by a factor � > 1 should increase the correlation component:
�Ec[⇢�] > ��Ec[⇢].

(5) As � ! 1, Ec should approach a negative constant.

(6) Lieb-Oxford condition: Ex[⇢] � Exc[⇢] � 2.273E LDA
x [⇢] (see below).

(7) The exchange potential should decay as �r�1 for r ! 1. Also, the xc
potential should change discontinuously as a function of the number of
electrons (“derivative discontinuity”).

(8) The correlation potential should decay as �1/2↵r�4, where ↵ is the
polarisability of the Nelec � 1 system.



Density-functional theory
Approximate density functionals

All xc functionals contain parameters (similar to semi-empirical methods) The
parameters can be chosen either

1. by enforcing conditions (1)-(8), or

2. by fitting them to experimental (or quantum mechanical) data.

In practice, the best functional to use depends on the system (e.g. molecule
versus solid) and on the properties that are being computed.

There is no absolute reference in DFT, like MP2 or CCSD in quantum chemical
methods, although usually hybrid functionals (see below) give good
performance.

New xc functionals appear very frequently, to address limitations of previous
functionals, improve their parameterisation or to address specific properties
(e.g. NMR, optical absorption, etc.).

12/31



Density-functional theory
Spin polarisation

For a system consisting of ↵ and � spin densities, the total density is given by
⇢ = ⇢↵ + ⇢� . The exchange and correlation components are given by

Ex = E↵
x [⇢↵] + E�

x [⇢� ]

Ec = E↵↵
c [⇢↵] + E��

x [⇢� ] + E↵�
c [⇢↵, ⇢� ]

(In Ec the correlation of electrons with parallel spin is di↵erent from the one
between electrons of opposite spin.)

Functionals can be formulated in terms of ⇢↵ and ⇢� separately, or in terms of
the spin polarisation ⇣

⇣ =
⇢↵ � ⇢�
⇢↵ + ⇢�



Density functionals
Classification

Quantum chemical methods can be classified according to the level of inclusion
of correlation, and their quality can be characterised by a well defined order
parameter. This is not possible for DFT methods.

A possible characterisation of functionals can be done based on the variables on
which they depend. “Jacob’s ladder” (JP Perdew) provides one such
classification.

Level Type Variables Examples

1 Local density ⇢ LDA, LSDA, X↵
2 GGA ⇢, r⇢ BLYP, PBE, PBE86, HTCH, etc.
3 Meta-GGA ⇢, r⇢, r2⇢ or ⌧ TPSS, BR, B95, ⌧ -HCTH, etc.
4 Hyper-GGA ⇢, r⇢, r2⇢ or ⌧ , B3LYP, PBE0, H+H, ACM, RSH, etc.

HF exchange
5 Generalised RPA ⇢, r⇢, r2⇢ or ⌧ , OEP2, double hybrids

HF exchange, virtual orbitals

K Burke, Perspec/ve on density func/onal theory,
J. Chem. Phys. 136, 150901 (2012)



Density functionals
Classification

Quantum chemical methods can be classified according to the level of inclusion
of correlation, and their quality can be characterised by a well defined order
parameter. This is not possible for DFT methods.

A possible characterisation of functionals can be done based on the variables on
which they depend. “Jacob’s ladder” (JP Perdew) provides one such
classification.

Level Type Variables Examples

1 Local density ⇢ LDA, LSDA, X↵
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HF exchange
5 Generalised RPA ⇢, r⇢, r2⇢ or ⌧ , OEP2, double hybrids

HF exchange, virtual orbitals

1) Is there a way to classify functionals?

2) Is there a way to say, for a given system, which functional will 
perform best?



Density functionals
Classification
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Density functionals
Jacob’s ladder

[1] Genesis 28: 10-19

[2] JP Perdew and K Schmidt,

[2] AIP Conf. Proc. 577, 1 (2001)

JP Perdew and K Schmidt, AIP Conf. Proc. 577, 1 (2001) 



Density functionals
Jacob’s ladder

[1] Genesis 28: 10-19

[2] JP Perdew and K Schmidt,

[2] AIP Conf. Proc. 577, 1 (2001)



Density functionals
Jacob’s ladder

[1] Genesis 28: 10-19

[2] JP Perdew and K Schmidt,

[2] AIP Conf. Proc. 577, 1 (2001)

Stained glass, St. Paul Cathedral Pittsburgh  

Genesis 28: 
10-19



Density functionals
The local density approximation (LDA)

In LDA, the density is treated locally as a uniform electron gas.

E LDA
xc =

Z
⇢(r)✏LDAxc (⇢(r))dr

✏LDAxc is the xc energy density, which is a function of ⇢(r).

(Thanks to Nic Harrison and Andreas Savin for the figure)

JL rung 1



Density functionals
The local density approximation (LDA)

The LDA exchange energy density for the HEG is given by Dirac’s formula

✏LDAx = �Cx⇢
1/3

For spin-polarised systems, the corresponding LSDA formula is

✏LSDAx = �Cxf1(⇣)⇢
1/3

f1(⇣) =
1
2

h
(1 + ⇣)4/3 + (1� ⇣)4/3

i

The correlation energy for the HEG has been derived analytically for the high
and low density limits. For intermediate densities, high accuracy data are
available from Quantum Monte Carlo. Interpolation formulae have been
derived. The most widely used parameterisations are those of Vosko, Wilk,
Nusair (VWN)(1) and Perdew-Wang (PW)(2).

(1) Can. J. Phys. 58, 1200 (1980); (2) Phys. Rev. B 45, 13244 (1992)



Density functionals
The local density approximation (LDA)

Performance

LSDA is exact for the HEG, apart from the small numerical inaccuracies in the
✏c parameterisation.

For molecular systems, LSDA underestimates the exchange energy by ⇠ 10%.
This error is larger than the whole correlation energy. The correlation energy is
overestimated and, as a consequence, bond energies are also overestimated,
often by ⇠ 100 kJ/mol.

The accuracy of LSDA is typically considered comparable to Hartree-Fock.

For extended systems, especially metals, in which the density varies slowly,
LSDA is usually considered acceptable.



Density functionals
The local density approximation (LDA)

Why does LDA work so well?

The main reason seems to be that LDA (like Hartree-Fock) satisfies a sum rule
for the exchange-correlation hole Pxc. This quantity represents the probability
density of finding an electron at r2 if another electron is located at r1,

Pxc(r1, r2) =
P2(r1, r2)
⇢(r1)

� ⇢(r2)

P2 is the pair density, and it determines the total energy.

Physically, Pxc describes the hole that the electron at r1 digs in the surrounding
electron density. For LDA (and HF)

Z
Pxc(r1, r2)dr1dr2 = �1

Strictly speaking, in LDA Pxc and P2 are very poorly described, but the
spherical average of Pxc is estimated reasonably.

19/31



Density functionals
Generalised gradient approximations (GGAs)

Improvements of LDA have to address deviations from the HEG limit. This can
be done by including in ✏xc an explicit dependence on the gradients of the
density (gradient approximations). Usually, this does not work, because the
resulting functional does not fulfil the Pxc sum rule.

In GGAs, the first derivative of the density is included as a variable, and, in
addition, sum rules conditions are enforced.

GGAs are parameterised, lighly (1 parameter as in B88) or heavily (15
parameters as in the HTCH series). The parameters are chosen to fit the
functional form to either ab initio or experimental data.

Some GGAs have been developed to address specific properties, and they are
very strong at predicting those (e.g. Keal-Tozer KT3 for shielding constants).

GGA corrections to LDA can improve the quality of the results, although highly
problematic issues in LDA are unlikely cured by GGAs.

B88, B97, OPTX, HCTH93, HCTC147, HCTH497, BLYP,
OLYP, OLYP, PW86, PW91, PBE, PBEsol, RPBE, mPW91,
KT1, KT2, KT3, etc.

JL rung 2



Density functionals
Meta-GGAs

In addition to the gradient of the density, one can add higher order derivatives,
for instance the Laplacian r2⇢. Alternatively, a dependence on the orbital
kinetic energy density ⌧ can be used, with the kinetic energy of each KS orbital
described by the von Weizsäcker functional ⌧W,

⌧W(r) =
|r⇢(r)|2

8⇢(r)

Examples:
BR, B95, ⌧ -HTCH, VSXC (21 empirical parameters),
TPSS and PKZB (non empirical)

These functionals can improve substantially some properties compared to LDA.

RMS atomisation energy errors (kJ/mol) for G3 data set:
HF 649, LSDA 439, PBE 87, ⌧ -HTCH 31.

JL rung 3



Density functionals
Hybrid or hyper-GGA functionals

Mix wavefunction theory (HF) and DFT using the adiabatic connection formula

Exc =

Z 1

0

h �|V hole
xc (�)| �id� ' 1

2
(h 0|V hole

xc (0)| 0i+ h 1|V hole
xc (1)| 1i)

� = 0: non-interacting electrons ! no correlation, only exchange; the exact
wavefunction is a single Slater determinant: we can compute h 0|V hole

xc (0)| 0i

h 1|V hole
xc (1)| 1i is unknown. Approximating it using LSDA gives the

half-and-half (H+H) functional

EH+H
xc =

1
2
EHF
x +

1
2
(E LSDA

x + E LSDA
c )

Using GGAs gives hybrid functionals like B3LYP

EB3LYP
xc = (1� a)E LSDA

x + aEHF
x + b�EB88

x + (1� c)E LSDA
c + cE LYP

c

with a = 0.2, b = 0.7, c = 0.8, and PBE0 with a = 0.25.

JL rung 4



Density functionals
Hybrid or hyper-GGA functionals

Hybrids usually give better accuracy than LDA and GGAs.

RMS atomisation energy errors (kJ/mol) for G3 data set:
HF 649, LSDA 439, PBE 87, B3LYP 39, ⌧ -HTCH 31.

Energies, geometries, vibrational and magnetic properties are usually more
accurate than LDA/GGAs, both in molecules and in the condensed phase.

Treating the non-local HF part of the functional may be very demanding
depending on the basis set used. CRYSTAL, which uses Gaussian basis sets,
treats hybrid exchange very e�ciently.

Localized basis sets versus plane-waves

Self-consistent hybrid functionals for solids



Density functionals
Generalised random phase methods

These functionals use information from both occupied and virtual KS orbitals.
Examples include Optimised E↵ective Potential (OEP) methods. In these
approaches, one requires that the density derived from a KS calculation using a
single-determinant wavefunction exactly matches the density derived from a
correlated wavefunction (e.g. from MBPT). This in turn defines the
exchange-correlation potential.

In OEP1 the reference density does not include correlation: it is an
exchange-only potential. OEP2 uses a reference density from MP2 theory, and
therefore contains both exchange (exactly) and correlation (to second order of
PT).

Other example include double hybrids (DH), mixing HF exchange and MP2
correlation:

EDH
xc = (1� a)EDFT

x + aEHF
x + (1� b)EDFT

c + bEMP2
c

Little is known about their performance, especially in the
solid state. Available in CRYSTAL14/17.

JL rung 5



Density functionals
Summary

There is a huge number of functionals available. Their performance depends on
the system and the properties under study. One may assume that climbing
Jacob’s ladder leads to better accuracy, but this may not always be the case.
Also, very little is known about level 4 and 5 functionals.



Density functionals
Limitations of DFT

Irrespective of the functional there are issues that DFT is currently unable to
address, for instance:

(1) Dispersion forces (van der Waals interactions)

(2) Loosely bound electrons in anions (SI problem)

(3) Some kind of bonds (e.g. two-centre one-electron) predicted to be too
stable

(4) Direct description of excited states is problematic (although some excited
state properties can be computed in TD-DFT)

(5) Relative energies of states with di↵erent spin multiplicities can be poorly
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“Broken-symmetry DFT”



A fundamental limitation of DFT

Static correlation aka non-dynamical correlation aka left-right correlation

                                        H2 dissociation 

CA Coulson and I Fischer, 
Philos. Mag. 40, 386 (1949)

Open-shell singlets

singlet open-shell singlet

⚠



Density-functional theory
Summary

(1) Hohenberg-Kohn theorems

(2) Exchange-correlation energy

(3) Density functionals

(4) Kohn-Sham equations

1. Hohenberg-Kohn theorem
2. Exchange-correlation energy
3. Kohn-Sham equations
4. Exchange-correlation functionals
5. Limitations of DFT



Density-functional theory
References

Robert G. Parr and Weitao Yang,
Density-Functional Theory of Atoms and Molecules,
Oxford University Press, 1989

Wolfram Koch, Max C. Holthausen,
A Chemist’s Guide to Density Functional Theory,
Wiley, 2001



Slater determinant

Wave-function methods
Hartree-Fock and post Hartree-Fock

Density-functional theory
𝚿(r1, r2, …, rN) → 𝜌(r)
E = E[𝜌(r)]
E[𝜌(r)] = EK + Ene + EC + Exc

Exc

Easy to code
Can be used on large and extended systems

Electron density replaces the wfn
The energy is a functional of 𝜌(r)

Exchange-correlation functional 

H 𝚿= E 𝚿

Notation:
n(r) ≡ 𝜌(r) 



Simula+on of extended systems



What do we mean by an “extended system”?

L

Periodic boundary conditions

F(x + nL) = F(x)



Perfect crystals: the direct lattice R
Infinite (3D) arrays of atoms (or groups of atoms) placed on a set of 
discrete points.

Rn = n1a + n2b + n3c where n = (n1, n2, n3) are sets of integers

ni are integers and a, b and c are primitive vectors.

The full lattice is created by translations.
n = (1, 1, 1) defines the unit cell.

Unit cell Direct lattice

a = a1

b = a2
c = a3

Rn



Unit cell: primiIve and convenIonal cell

PrimiZve cell
It contains only one lapce point and the whole crystal can be constructed 
by translaZng it

ConvenZonal cell
The smallest unit cells whose axes follow the symmetry axes of the crystal 
structure; it may or may not be primiZve and its volume is an integer 
mulZple of the primiZve cell volume

Silicon

Primitive Conventional



Conventional cells

Rhombohedral, hexagonal, triclinic: one unique form each
Tetragonal: simple and body-centered
Monoclinic: simple and side-centered
Orthorhombic: simple, face-centered, body-centered, side-centered

Cubic

N=1 N=4 N=2



Bravais lattices                           Crystallographic point groups

Sets of symmetry operations that 
leave the structure of 
a crystal unchanged

14 Bravais lattices x 32 MPGs 
= 130 space groups

(MPGs = molecular point groups)



Atoms in the crystal lattice
Asymmetric unit
Smallest fracZon of a unit cell that, rotated and translated (according to 
the space group), generates the full unit cell 

Silicon

Asymmetric unit Primitive cell Conventional cell

Bravais lattice: face centered cubic
Point group: m3m
Space group: 227 (F d -3 m)
Lattice constant: a=0.543 nm

Special position
NB: most ab initio codes 
require a primitive cell



Lysozyme crystal 
G. Katona et al. DOI: 10.1063/1.4931825

X-ray diffraction

Cell parameters, 
space group, 
special positions

http://dx.doi.org/10.1063/1.4931825


The reciprocal laPce G

Set of vectors Gm = n1b1 + n2b2 + n3b3 that are Fourier transforms of the 
real lattice vectors Rn: 

𝑒!𝐆!#𝐑" = 1 ⇒ 𝐆% * 𝐑& = 2𝜋𝑁

For instance, for a simple cubic direct lattice:

Gm = n1(2𝜋/𝑎) + n2(2𝜋/𝑏) + n3(2𝜋/𝑐), with 𝑎 = 𝑏 = 𝑐.

The space in which G is defined is called reciprocal space (or G-space).

NOTE
A plane wave 𝑒!'( is a function of both k and x: it oscillates with 
periodicity )*

'
 in real (direct) space and with periodicity 

)*
(

 in its reciprocal space.

b1 = a*
b2 = b*
b3 = c*



The Brillouin zone
A uniquely defined primitive cell in G space: volume in G space that is 
closer to the origin than to any other lattice point 

2D sc

2D hex 3D FCC

The Brillouin zone in direct space is called 
Wigner-Seitz cell.   



Electrons in crystals: Bloch waves
In a periodically repeated environment, the wavefunctions of the 
electrons have the Bloch wave form (Bloch theorem):

n is the band index and the reciprocal lattice vector k is called the crystal 
wave vector. 𝑢𝒌& 𝒓  has the same periodicity of the lattice.

For any vector G, 𝜓kn(r) = 𝜓(k+G)n(r). Therefore, we can restrict the 
calculations to only those vectors k contained in the Brillouin Zone. 

We can describe the properties of an infinite crystal in
terms of a finite volume in reciprocal space. 

R0 R1 R2 R3 R4



Energy levels in molecules and in solids

Molecules
Discrete energy levels 
(MO energies)

Solids
Energy bands



Band structures and electronic densities of states

D. Duan et al., Scientific Reports 4, 6968 (2014)



Angle-resolved photoemission spectroscopy (ARPES)

K. Wang et al., Crystals 10, 773 (2020)



Summary

- Real space lattice R
- Add atoms: crystal structure
- Reciprocal lattice
- Brillouin zone
- Calculations are restricted to k vectors in the Brillouin zone



DFT so=ware



Two approaches

1) Code your own DFT software

2) Use existing academic/commercial or open-source packages:

 ABINIT, ACES, ADF, Atomistix, BigDFT, CADPAC, CASTEP, 
CFOUR, COLUMBUS, CONQUEST, COSMOS, CP2K, CPMD, CRYSTAL, 
DACAPO, DALTON, DFTB+, DFT++, DIRAC, DMol3, EXCITING, 
FLEUR, FHI-aims, FreeON, Firefly, GAMESS (UK), GAMESS 
(US), GAUSSIAN, GPAW, hBar Lab, JAGUAR, Materials Studio, 
MOLCAS, MOLPRO, MOPAC, MPQC, NWChem, OCTOPUS, ONETEP, 
OpenAtom, OpenMX, ORCA, PLATO, PQS, Priroda-06, PSI, 
PWscf, Q-Chem, Quantum ESPRESSO, SPARTAN, SIESTA, 
TURBOMOLE, VASP, WIEN2k, ...



How do DFT codes differ from each other?

Largely in the basis sets they use and in whether they work for molecules 
(e.g., Gaussian), for extended systems (e.g., VASP) or for both (e.g., 
CRYSTAL, CP2K).

Basis set functions are used to represent continuous functions (like the 
electron densities and KS orbitals) in discrete form. In this way, operations 
can be expressed in matrix form and handed by a computer.

A computer only stores and manipulates basis set coefficients, not the 
basis set functions themselves.



Kohn-Sham equations in matrix form

Kohn-Sham equations

Basis set expansion

Matrix representacon



Basis set functions

The choice of basis set depends on the system. 
Local basis sets (like Gaussian functions or Slater 
orbitals) are mostly suitable for molecular systems. 
However, they can also be used for periodic 
systems.

Floating basis sets, like plane-waves, are ideal for 
infinite systems.

Different basis sets can be used together, to speed 
up specific parts of the calculations.

Gaussian, ADF, …

CRYSTAL

VASP, ABINIT, …

CP2K



Plane-waves





Plane-wave codes



Plane-wave basis set

- PWs form an orthonormal set
- They do not depend on the atomic coordinates: they have no origin
- They represent all space in the same “unbiased” way
- Computing forces is much easier than with atom centered basis sets
- The quality of a calculation can be improved by simply adding more PWs
- They do not suffer from BSSE and linear dependence issues



Plane-wave expansion

Orbitals

Density

(Complex) PW coefficients

This is the data stored on a computer; 
the PW coefficients change during the SCF

Fourier transform: n(r) ⬄n(G)



Brillouin zone sampling

(1) Monkhorst-Pack mesh (1976)
(2) 𝛤-point approximaZon



Truncation: the kinetic energy cutoff

The accuracy of a PW calculaZon depends on a single parameter, Ecut

Truncate the PW expansion at 
each k-point to keep only those PWs 
whose kinetic energy is lower than Ecut



Truncation: the kinetic energy cutoff

EK

Increasing the PW 
kinetic energy allows 
one to describe finer 
details in direct space

Functions oscillating 
rapidly in space require 
PWs with very high 
kinetic energies



Pseudopotentials and PAW
Gaussian basis sets, in contrast 
to PWs, treat the 
Coulomb singularity analyically

(Singer, 1960)

PseudopotenZals
- remove the singularity
- remove wavefuncZon oscillaZons
- reduce the number of electrons

- Local versus non-local pps
- Norm-conserving versus ultra-soft pps
- Projector augmented wave (PAW) method 



The Hartree (or Coulomb) potential

• n(r) and n(G) contain the same information
• We can convert one into the other using Fast Fourier Transforms 

(FFTs), which scale as Npwlog (Npw)
• Some components of the Hamiltonian are easy to compute in real 

space (e.g., xc potential), others in G-space (e.g., kinetic energy)

R space G space

If we include the nuclear charge in n(r), n(G=0) is the total charge
G=0 term !!! ⇾ charge neutrality and background charge

Unfortunately, this technique cannot be used 
efficiently with the non-local exchange operator



The Hartree ( or Coulomb) potenIal



Molecular calculations with plane-waves

First method (for neutral molecules): supercell approach

This method can be applied to surfaces as well.

Extremely inefficient, because a large number of PWs 
are used to describe the empty volume of the supercell, 
and large cut-offs are required to describe the electron 
density distribution in the molecular region.



Molecular calculations with plane-waves

Second method (for charged molecules too): 
cluster boundary conditions

Separation of short- and long-range Coulomb interactions.

The contribution to the Coulomb energy from the second term are 

which can be computed by solving a Poisson’s equation

with boundary conditions



Plane-waves

✓ The most popular approach to solid state calculations
✓ Accuracy controlled by a single parameter (Ecut)
✓ Relatively easy to code and parallelize
✓ Atomic forces for AIMD are easy to compute
✓ Extensive libraries of pseudopotentials and PAW projectors available
✓ Scales reasonably well with PW number: Npwlog (Npw)

     
✗ Advanced DFT functionals (e.g. hybrids) are expensive
✗ Simulations on non-periodic systems (molecules, surfaces, etc.) are 
     extremely inefficient
✗ System sizes are limited to a few hundred atoms



Real space methods:
Local basis sets



Nearsightedness of electronic matter (NEM)

For a many-electron system, the density 
change induced by w(r’) at r0 decays 
monotonically (exponentially or 
polynomially) with R

NEM provides a rigorous justification for 
local-basis set and “linear scaling” 
electronic structure methods

W Kohn, Phys Rev Lett 76, 3168 (1996)
W Kohn, Phys Rev 113, A171 (1964)

Walter Kohn

Prodan & Kohn, 2005



Real space DFT codes (a few)

Numeric atom-centered orbitals
FHI-aims, SIESTA*, ADF-BAND, CONQUEST*, ONETEP*

Gaussian basis sets 
AIMPRO, CRYSTAL

Linearized augmented plane-wave (LAPW)
Wien-2k, FLEUR, exciting, Elk

Real space grids and wavelets
octopus, GPAW, BigDFT*

(* Linear scaling codes)



CRYSTAL: a quantum-chemical code for periodic systems
(Contracted) Gaussian-Type Orbitals (GTOs)

http://www.crystal.unito.it/

http://www.crystal.unito.it/index.php


Crystal orbitals and SCF

Scales (theoretically) as NAO
3



Crystal orbitals and SCF

𝜒A
𝜒B

𝜒C

𝜒D



Gaussian basis sets



Gaussian basis sets

Good for accurate all-electron calculations on periodic systems,
surfaces and polymers. Can treat easily non-local density functionals.

Calculation (*) Full geometry optimization
XC functional HSE06 (PWs) B3LYP HSE06

Lattice parameter 4.2530 
(+0.38%)

4.2853 
(+0.37%)

4.2603 
(+0.22%)

Dispersion D3 D3 D3

K-mesh 7x7x7 7x7x7 7x7x7

Time (hours) 13.5 0.09 
(~5 min)

0.29 
(~17 min)

Band gap 2.052 2.149 1.926

(*) Cu2O data from Aleks Živković (Utrecht University)



Two extremes

Plane-waves Gaussian funcZons

- Floating
- Delocalized in real space
- FFTs
- Need pseudopotentials
- Easy to code 
- Easy to parallelize
- Npwlog (Npw) scaling

- Atom centered
- Localized in real space
- Recursive integral calculation
- All-electron calculations possible
- Difficult to code in periodic systems
- Parallelization is highly non-trivial
- NAO

3-N scaling



The Gaussian/plane-wave method



The Gaussian and plane-wave method (GPW)

Atoms centered Gaussians are used to represent the wavefunction and 
the Kohn-Sham matrix. PWs are used to represent the electron density 
and to compute efficiently the Hartree potential.

The representation of the wavefunction is compact, which allows for 
efficient algorithms with a relatively small memory footprint.

For large systems, this method scales linearly, because the Kohn-Sham 
matrix and the density matrix are sparse.  

https://www.cp2k.org/about

https://www.cp2k.org/about


The Gaussian and plane-wave method (GPW)

CP2K is well suited for large-scale 
AIMD simulaZons

It requires specifying both a 
Gaussian basis set and a set of 
pseudopotenZals

For finite systems, cluster 
boundary condiZons can be used

Wide variety of xc funcZonals 
available, but hybrids remain 
computaZonally very expensive

https://www.cp2k.org/about

https://www.cp2k.org/about


Example

/xhome/crc/leb140/WorkshopFall2024

Total energy calculation (DFT/BLYP with van der Waals corrections) of a periodic 
box of 64 water molecules (192 atoms); DZVP basis set, Ecut=280 Ry



Software: Summary

- Plane-wave codes are widespread and generally easy to use
- A single parameter Ecut determines the accuracy of the calculations
- They work well on medium size systems
- All of them can do AIMD

- Real-space codes are more complex to use
- They can be better for specific tasks (e.g., modelling surfaces)
- Some of them can treat advances functionals, like hybrids
- AIMD with atom-centered basis set code may be complicated to do

- The GPW method attempts to exploit the benefits of both



Talk summary

This talk:

1. Density-functional theory
2. Simulating infinitely large systems
3. Software: Plane-waves, Gaussians, GPW

A (possible) future talk:

1. Ab initio molecular dynamics
2. Modelling excited states and photochemistry
3. Machine learning in electronic structure theory


