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Ab initio calculations

Computing properties of materials from first principles

- energies

- structures

- relative stabilities of conformers of phases

- mechanical, magnetic and optical properties
- evolution with time

- chemical reactivity

- how different systems interact

First-principles (or ab initio) means that we try to compute these
properties using the laws of quantum mechanics with no
experimental or empirical parameters
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Density-functional theory (DFT)

DFT is one of the most popular approaches to study the electronic
structure and dynamics of molecules and complex materials

It is widely used in chemistry, condensed matter physics, materials science
and engineering

It is usually considered an ab initio (or first-principles) method, because it
attempts to solve Schrodinger’s equation without using empirical
parameters

In practice, DFT calculations involve at least one approximation, the
exchange-correlation functional

Choosing the correct functional is the essential component of all DFT

calculations .
Pitt
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Overview

1. Introduction to DFT
Hartree-Fock theory, correlation, Hohenberg-Kohn theorem, orbital-free DFT,
the Kohn-Sham equations, the exchange correlation functional, limits of DFT

2. Modelling extended systems
The crystal lattice, periodic boundary conditions, real and reciprocal space,
Bloch’s theorem, the Brillouin zone

3. Basis sets and software
DFT with computers, local and floating basis sets, their strengths and
limitations, a practical example
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About myself

- PhD in Physical and Theoretical Chemistry (Oxford, UK, 1998-2001)

- Postdoc in Theoretical Chemistry (Cambridge, UK, 2001-2004)

- Postdoc in Theoretical Chemistry (Amsterdam, NL, 2004-2008)

- Principal Scientist (STFC Rutherford-Appleton Lab, UK, 2008-2018)

- Research Assistant Professor in Chemistry and Consultant at CRC (2018-)

Research interests

- Ab initio molecular dynamics and chemical reactivity
- Excited states and TD-DFT Pltt
- Software development
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The atomistic description
of matter
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Atoms, molecules and crystals

tyrosine

Atom = nucleus + electrons
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Atoms, molecules and crystals
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Born-Oppenheimer approximation

The nuclei are generally easy to treat, as they move slowly compared to
the electrons and can be considered classical point charges

The nuclei are treated as unmovable classical point

charges, providing a potential that constrains the motion
of the electrons

(BO versus adiabatic approximation) PlttCRC
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Electron interactions

The nuclei are generally easy to treat, as they move slowly compared to
the electrons and can be considered classical point charges

Electrons interact:
- classically (as moving negative point charges)
- guantum mechanically (as fermions)

This leads to the appearance of exchange and PlttCRC

correlation effects in their distribution _
Center for Research Computing



Schrodinger equation
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Hartree-Fock

Pitt CRC
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Hartree-Fock: the quantum nature of the electrons
An ensemble of N interacting electrons is described by a many-body
wavefunction
¥(,2,..,N).
Electrons obey the Fermi-Dirac statistics (anti-symmetry):

¥(2,1,..,N)=-¥(1, 2, .., N).

The HF method accounts for anti-symmetry exactly using a model
approximate wavefunction @, called Slater determinant

¢1E1; ¢2E1; - ¢N51;

12|612) 62(2) ... on(2

(1,2, .. N):(%)/ | o
o1(N)  d2(N) ... on(N)

One-electron orbitals PlttCRC
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The Hartree-Fock method Slater determinant

(1) 92(1) ... on(1)
1 )1/2 ¢1(2) ¢2(2) ¢N(2)

®(1,2, .., N) = (m

R

HWY=EY Schrodinger’s equation (in BOA)
1 Nelec Noyclei Nelec Za Netec Nelec 1 Noyclei Nnuclei ZaZb
H:‘EZ;V'?‘ X:; ; IR, —ri| +;§ —nl X:; ; IR — Ry|

Hamiltonian operator

Solution: Vary ¢, until E is a minimum

E = total energy .
‘ Y = wave-function P lttCRC
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Hartree-Fock: total energy

E=<W|H|¥P>

E =ezec<¢,-(1)|h,-|¢,-(1)>+

Zf (6i(1)65(2)\gs |1 (1)52)) — (61(1)5(2) i (1) Bi(2)) + van
—Zh +Zi(J,, ) + Van

Dirac’s notation
(610 |v)=(0|0y)

@) sﬁawdx, Pitt CRC
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Hartree-Fock: the Coulomb interaction

Coulomb repulsion

Nelec ' Ay’ between electron i
E = Z (9i(1)|hilpi(1))+ ffdr ar’ pi{r) pi(r’) andV\:eIectronj |

Nelec Nelec

2

i=1 j>i

(0i(1);(2)gijl ¢i(1)¢;(2)))— (#i(1)¢(2)8i| 6 (1)$i(2)) + van

|N

Nelec Netec Nelec

—Zh + ) (i — Ki) + Van

i=1 j>i

An electron i moves within the average Coulomb field J created by the
other electrons and within their exchange field K

Hartree-Fock = independent electrons moving in a mean field

Pitt CRC
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Hartree-Fock: the exchange interaction

elec

E = Z (@i(1)|hili(1))+

elec elec

D) (6i(1)6i(2)lgiil6i(1)05(2))

i=1. j>i

(#i(1)9;(2)|gii|9i(1)9i(2))

Vinn
elec Nelec Nelec

— Z h; < Z Z(JU ) + Van Exchange interaction between
i=1 j>i electron i and electron j

An electron i moves within the average Coulomb field J created by the
other electrons and within their exchange field K

Hartree-Fock = independent electrons moving in a mean field

Pitt CRC
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Mean-field approximation
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Mean-field approximation
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Instantaneous correlation in the motion of the P.
electrons is neglected lttCRC
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Electronic correlation

Correlation in the electron motion: the probability of finding one
electron at a given position is not independent of the positions of the
other electrons

Dynamical correlation
Electrons tend to avoid each other as they move

Non-dynamical (static) correlation
Degenerate states influence the motion of the electrons

Hartree-Fock: exchange is exact, but there is no correlation; one needs
post-Hartree-Fock methods (MP2, Cl, CC, etc.) to account for correlation

DFT: exchange and (dynamical) correlation are approximated in practice

Pitt
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Hartree-Fock
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Density-functional theory
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DFT versus wavefunction theory

Unlike Hartree-Fock, DFT does not attempt to propose an Ansatz for the
wavefunction

There is no many-body wavefunction in DFT
DFT is based on the assumption (justified by a rigorous theorem) that all

information about electron interactions can be obtained from the
electron density alone

The electron density is a simple and real function of x, y and z only, and
it can be observed experimentally

The total energy of a system of nuclei and electrons is a unique
functional of the electron density

Pitt
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Density-functional theory

The electron density

In quantum mechanics, the electron density is given by the square modulus of
the wavefunction integrated over the coordinates of N — 1 electrons:

p(r):/|\U(r1,r2,...,rN)|2dr2...drN

Experimentally, electron density maps can also be
obtained using X-ray (or neutron) crystallography

The electron density is a real function in 3D space

Pitt
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Density-functional theory

The Hohenberg-Kohn theorems

nuclei

Zlijm

elec

ZV"’

Nejec Nelec Npuclei Nnuclei ZaZb
1 @rer] 93 2 R.—Ry

i=1 j>i

External potential: ve,(r)

I: For a non-degenerate ground state, the external potential is
a unigue functional of the electron density; the total energy is
therefore a unique functional of the electron density

ll: The ground state electron density minimizes the total
energy

Note:
A function is a rule that, given a number, returns a number. ® N N
A functional is a rule that, given a function, returns a number. ll l
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Density-functional theory
Hohenberg-Kohn theorem |

Assume that two different external potentials Vexe and Vi, (describing the
electron-nuclei interaction plus possibly other perturbations) result in the same
electron density p.

Since there are two potentials, there are also two different Hamiltonians H and
H’. Their respective mimimum-energy wavefunctions are W and W’ are also
different.

If we now take W’ as an approximate wavefunction for H, we obtain, from the
variational principle that

Reductio ad absurdum
(V'|H|V') > E

(W HIW') + (W'|H — H'|V) > E
E(; + <w/| Vext - Velxt|w,> > EO

£ + / p(F)(Vor — Vie)dr > Eo

Walter Kohn (1923-2016) PlttCRC
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Density-functional theory
Hohenberg-Kohn theorem |

Similarly, if we take W as an approximate wavefunction for H', we get
Eo — /P(r)(vext — Vie)dr > Ey

If we sum the two inequalities, we get that Ej + Ey > E} + Eo, which means
that the assumption is wrong.

For the ground state, there is a one-to-one correspondence between the
electron density and the nuclear potential, and therefore the total energy.

The energy is a unique functional of the electron density, E = E[p].

Pitt
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Density-functional theory
Hohenberg-Kohn theorem I

Given an approximate electron density p’ that integrates to the number of
electrons,

/P(r)dl’ == Nelec;
the energy of this density is larger or equal to the exact ground state energy

Eo[p'] > Eolp]

This theorem is the DFT version of the variation principle for wavefunctions of
quantum mechanics.

Pitt
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Density-functional theory
“Intuitive proof” of DFT (EB Wilson, 1965)

X-ray crystallography

The electron density uniquely determines the positions and charges of the
nuclei and therefore the Hamiltonian. This observation is based on the fact
that the electron density has a cusp at the nucleus, i.e.

22 =~ 2;0) [ag(r:a)] ra=0

where p(r) is the spherically averaged electron density. A careful examination
of the electron density therefore uniquely determines the external potential and
the Hamiltonian.

a

Pitt CRC
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Density-functional theory

The kinetic energy and exchange-correlation problems

In principle, the HK theorem Il can be used to determine the ground state
electron density. We need to know explicitly E[p], then vary p until the energy
is minimised. In the BO approximation, E[p] can be decomposed into kinetic
energy, nuclei-electron attraction and electron-electron repulsion terms,

Elp] = Tlp] + Enelp] + Eee[p]-

The e-e repulsion can be decomposed into a Coulomb (J[p]) and an exchange
(K[p]) part. We can compute Enc[p] and J[p] easily:

nuclel

Eulpl == 3 / IR"’@'d

Jp] = //p(r)p$t| drdr’

T[p] and K[p] however remain unknown, and they have to be modelled.
This is very difficult to do, especially for T[p].

— “orbital-free” DFT Pltt
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Orbital-free DFT

® o +
® ® ®
®
Homogeneous electron gas ® - ®
® -
® ®
®
® o
Thomas-Fermi kinetic energy functional (1927)
Trr = 15(3)? [ pider

Does not include the exchange-energy, which can be added using a formula derived by
Dirac (Thomas-Fermi-Dirac functional). Too inaccurate for most applications.

Von Weizsacker correction (1935)

Ty =5 [ 9o} Par

Other corrections can be applied to the TF-W functional.

Pitt CRC
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Orbital-free DFT

Current KE functionals are typically too inaccurate for general applications. OF
DFT can however work well when the deviation of p(r) from the HEG is small.
It is computationally far less demanding than “standard” DFT.

Al solid-liquid interface
BJ Jesson and PA Madden, JCP 113, 5935 (2000)

Ab initio molecular dynamics with OF DFT
1062 atoms per cell, 9 ps statistical averages

@(z)

CONUNDrum: A program for orbital-free density
functional theory calculations

P Golub and S Manzhos, Comp. Phys. Comm. 256,
107365 (2020)

piz) (@u™)

@ ® @ @ Y el

: ‘ °
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Orbital-free DFT

plr) — % —> E[p]

Interacting electrons

Kohn-Sham DFT
p(r) <— (¢(r)) —> ElP]]

Pitt CRC
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Density-functional theory
Kohn-Sham theory

The idea of the KS formalism is to split the kinetic energy functional into a
part that can be calculated exactly and a small correction term. This is done
by introducing a set of orbitals representing a fictitious ensemble of
non-interacting electrons.

The kinetic energy can then be computed for the non-interacting electrons

elec

1 N,
Ts= =3 2 (V710

The orbitals are required to reconstruct the electron density

Nelec

o) = > (1P

Pitt
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Density-functional theory

The exchange-correlation functional

The KS energy functional is then written as

Elp] = Ts + Enelp] + Ecc[p]

E.[p] (the so called exchange-correlation functional) contains the component
of the kinetic energy not accounted for by Ts, K[p] and any correlation
contribution in the electron dynamics.

E.c[p] is in general unknown and it has to be approximated. The difference
between different DFT methods is in the choice of E,.

It can be proved that E;. is a universal functional, valid for all systems.

It is costumary to decompose E,. into an exchange E; and a correlation E.
component. However, only E,. has a physical meaning.

Pitt
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Why does Kohn-Sham DFT work?

1500 |- ] Eev B
Mn
< 1000 - R
>
3 T Toy
&
g
“ 500 —
EVV
|

FIG. 4. Relative magnitudes of contributions to total valence
energy of Mn atom (in eV).

RO Jones and O Gunnarsson,

Rev. Mod. Phys. 61, 689 (1989) PittCRC
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The Kohn-Sham equations

<_%v2 +va®)) vilr) = i)

N

p(r) =) lpi(x)’

]

A set of one-particle eigenvalue equations, with the one-particle
wavefunctions giving the total electron density.

These are the equations that all DFT codes solve, a way or another.

However, we still need an expression for E,..

W Kohn and LJ Sham, P’
Phys. Rev. 140, A-1133 (1965) ltt
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Density-functional theory

Properties of the exact Eic

» (1)
(2)

(3)
(4)

(5)
(6)
» (7)

(8)

Self-interaction free (most commonly used functionals are not Sl free -
there are ways to correct KS DFT for the self interaction).

For constant densities, the uniform electron gas E.. (which is known)
should be recovered. This is especially important in solid state systems.

E, should scale linearly with the density: p — A\p = E;[p] = A\E[p].

Scaling p by a factor A > 1 should increase the correlation component:
—Ec[pA] > —AEc[p].

As A — oo, E. should approach a negative constant.
Lieb-Oxford condition: Ex[p] > Ex[p] > 2.273E:*[p] (see below).

The exchange potential should decay as —r~! for r — co. Also, the xc
potential should change discontinuously as a function of the number of
electrons ( “derivative discontinuity”).

The correlation potential should decay as —1/2ar™*

polarisability of the Ngec — 1 system.

. where « is the

Pitt
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Density-functional theory

Approximate density functionals

All xc functionals contain parameters (similar to semi-empirical methods) The
parameters can be chosen either

1. by enforcing conditions (1)-(8), or
2. by fitting them to experimental (or quantum mechanical) data.
In practice, the best functional to use depends on the system (e.g. molecule

versus solid) and on the properties that are being computed.

There is no absolute reference in DFT, like MP2 or CCSD in quantum chemical
methods, although usually hybrid functionals (see below) give good
performance.

New xc functionals appear very frequently, to address limitations of previous
functionals, improve their parameterisation or to address specific properties
(e.g. NMR, optical absorption, etc.).

Pitt
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Density-functional theory

Spin polarisation

For a system consisting of a and 3 spin densities, the total density is given by
p = pa + ps. The exchange and correlation components are given by

Ex = E [pa] + EP [pg]
Ec = EX[pa] + E P [ps] + ES[pas po]

(In Ec the correlation of electrons with parallel spin is different from the one
between electrons of opposite spin.)

Functionals can be formulated in terms of p, and pg separately, or in terms of
the spin polarisation ¢
_ Pa — P8
(=t
Po t+ PB

Pitt

Center for Research Computing



Density functionals
wB97

e [ MB1 55 B

EglgBEsol PB ELY R;;*;g%m

(PBE S D A
#EB3-3 =Y. PEX X
revPBE PKZB99

ese VWNS[ES D “1§P86
LCwPBER 88 SN
PZBI PSS

mQc
s AMO5 GGoo PWB6B97- o
oF2 neet (3O G CAM-B3LYP
KT3 vwn "
K Burke, Perspective on density functional theory, P'
J. Chem. Phys. 136, 150901 (2012) lttCRC
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Density functionals

1) Isthere a way to classify functionals?

2) Is there a way to say, for a given system, which functional will
perform best?

Pitt
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Density functionals

Classification

Quantum chemical methods can be classified according to the level of inclusion
of correlation, and their quality can be characterised by a well defined order
parameter. This is not possible for DFT methods.

A possible characterisation of functionals can be done based on the variables on
which they depend. “Jacob’s ladder” (JP Perdew) provides one such
classification.

Pitt
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Density functionals

Jacob’s ladder

Chemical Accuracy

Jacob’s Ladder of Density Functional

Approximations ®
. : 7
for the Exchange—Correlatlon Energy unoccupied ¢a(r') l exact exchange and exact partial correlation
John P. Perdew and Karla Schmidt occupied ¥,(r') exact exchange and compatible correlation
Department of Physics and Quantum Theory Group, Tulane University,
New Orleans, LA 70118 USA 7(r) meta-generalized gradient approximation
Vn(r) generalized gradient approximation

Abstract. The ground-state energy and density of a many-electron system are often

calculated by Kohn-Sham density functional theory. We describe a ladder of approxi-

mations for the exchange-correlation energy as a functional of the electron density. At n(r) T O local spin density approximation

the lowest rung of this ladder, the contribution to the energy from a volume element

of 3-dimensional space is determined by the local density there. Higher rungs or lev-

els incorporate increasingly complex ingredients constructed from the density or the

Kohn-Sham orbitals in or around this volume element. We identify which additional

exact conditions can be satisfied at each level, and discuss the extent to which the func-

tionals at each level may be constructed without empirical input. We also discuss the Hartree WOI‘ld
research that remains to be done at the exact-exchange level, and present our “dreams

of a final theory”.

“Jacob left Beer-sheba and went toward Haran. He came to a certain place and FIGURE 1. Jacob’s ladder of density functional approximations. Any resemblance to the Tower

stayed there for the night, because the sun had set. Taking one of the stones of the of Babel is purely coincidental. Also shown are angels in the spherical approximation, ascendin,
place, he put it under his head and lay down in that place. And he dreamed that there purely g P PP ’ €

was a ladder set up on the earth, the top of it reaching to heaven; and the angels of and descending. Users are free to choose the rungs appropriate to their accuracy requirements
God were ascending and descending on it.” and computational resources. However, at present their safety can be guaranteed only on the two
Genesis 28.10-12 lowest rungs.

JP Perdew and K Schmidt, AIP Conf. Proc. 577, 1 (2001)

Pitt CRC
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Density functionals

Jacob’s ladder

| Level | Type | Variables | Examples

1 Local density P LDA, LSDA, X,

2 GGA p, Vp BLYP, PBE, PBE86, HTCH, etc.

3 Meta-GGA p, Vp, Vzp or T TPSS, BR, B95, 7-HCTH, etc.

4 Hyper-GGA p, Vp, Vzp or T, B3LYP, PBEO, H+H, ACM, RSH, etc.
HF exchange

5 Generalised RPA p, Vp, Vzp or T, OEP2, double hybrids
HF exchange, virtual orbitals

Pitt CRC

Center for Research Computing



Density functionals

Jacob’s ladder

Genesis 28:
10-19

3 g N
Stained glass, St. Paul Cathedral Pittsburgh Pll '

Center for Research Computing



Density functionals JLrung 1

The local density approximation (LDA)

In LDA, the density is treated locally as a uniform electron gas.

E-PA — / p(r)e™ (p(r))dr

er2” is the xc energy density, which is a function of p(r).
p Y
A Y
/‘ ra
P
A
//
/\ /
P
A
/ \
/,./
/ /
- > £,

L]
(Thanks to Nic Harrison and Andreas Savin for the figure) Pll l CRC

Center for Research Computing



Density functionals
The local density approximation (LDA)

The LDA exchange energy density for the HEG is given by Dirac’s formula
(DA _ —Cxp1/3
For spin-polarised systems, the corresponding LSDA formula is
¢LSPA _ _fo—l(é-)pl/3

A0 =5 [+ + -0

The correlation energy for the HEG has been derived analytically for the high
and low density limits. For intermediate densities, high accuracy data are
available from Quantum Monte Carlo. Interpolation formulae have been
derived. The most widely used parameterisations are those of Vosko, Wilk,
Nusair (VWN)Y) and Perdew-Wang (PW)®.

() Can. J. Phys. 58, 1200 (1980); () Phys. Rev. B 45, 13244 (1992)
P .
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Density functionals
The local density approximation (LDA)

Performance

LSDA is exact for the HEG, apart from the small numerical inaccuracies in the
€c parameterisation.

For molecular systems, LSDA underestimates the exchange energy by ~ 10%.
This error is larger than the whole correlation energy. The correlation energy is
overestimated and, as a consequence, bond energies are also overestimated,
often by ~ 100 kJ/mol.

The accuracy of LSDA is typically considered comparable to Hartree-Fock.

For extended systems, especially metals, in which the density varies slowly,
LSDA is usually considered acceptable.

Pitt
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Density functionals
The local density approximation (LDA)

Why does LDA work so well?

The main reason seems to be that LDA (like Hartree-Fock) satisfies a sum rule
for the exchange-correlation hole P,.. This quantity represents the probability
density of finding an electron at r; if another electron is located at rq,

P>(r1,r2)

Pic(ri,r2) = ()

— p(r2)
P> is the pair density, and it determines the total energy.

Physically, P, describes the hole that the electron at r; digs in the surrounding
electron density. For LDA (and HF)

/ch(rl,rQ)drldl'Q = —1

Strictly speaking, in LDA P, and P, are very poorly described, but the
spherical average of Py is estimated reasonably. P'

Center for Research Computing



Density functionals JLrung 2

Generalised gradient approximations (GGAs)

Improvements of LDA have to address deviations from the HEG limit. This can
be done by including in e, an explicit dependence on the gradients of the
density (gradient approximations). Usually, this does not work, because the
resulting functional does not fulfil the Px sum rule.

In GGAs, the first derivative of the density is included as a variable, and, in
addition, sum rules conditions are enforced.

GGAs are parameterised, lighly (1 parameter as in B88) or heavily (15
parameters as in the HTCH series). The parameters are chosen to fit the
functional form to either ab initio or experimental data.

Some GGAs have been developed to address specific properties, and they are
very strong at predicting those (e.g. Keal-Tozer KT3 for shielding constants).

GGA corrections to LDA can improve the quality of the results, although highly
problematic issues in LDA are unlikely cured by GGAs.

B88, B97, OPTX, HCTH93, HCTC147, HCTH497, BLYP, .

OLYP, OLYP, PW86, PW91, PBE, PBEsol, RPBE, mPWO1,

KT1, KT2, KT3, etc. ]_l l

Center for Research Computing



Density functionals JLrung 3

Meta-GGAs

In addition to the gradient of the density, one can add higher order derivatives,
for instance the Laplacian V?p. Alternatively, a dependence on the orbital
kinetic energy density T can be used, with the kinetic energy of each KS orbital
described by the von Weizsacker functional 7,

_ |Vp(r))?
™= a0

Examples:
BR, B95, 7-HTCH, VSXC (21 empirical parameters),
TPSS and PKZB (non empirical)

These functionals can improve substantially some properties compared to LDA.

RMS atomisation energy errors (kJ/mol) for G3 data set:
HF 649, LSDA 439, PBE 87, 7-HTCH 31.

Pitt
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Density functionals JLrung 4

Hybrid or hyper-GGA functionals
Mix wavefunction theory (HF) and DFT using the adiabatic connection formula

Ex = /0 (WA | V()| W) dA = %(<wo|vx*‘c°'e<0)\wo> + (W1 | VEE(1)| 1))

A = 0: non-interacting electrons — no correlation, only exchange; the exact
wavefunction is a single Slater determinant: we can compute (Wo|V/°'¢(0)|W,)

(W1 | V' (1)|W1) is unknown. Approximating it using LSDA gives the
half-and-half (H4-H) functional

ENHH lErlF I E(E)I(_SDA 1 ECLSDA)
2 2
Using GGAs gives hybrid functionals like B3LYP

EZYP = (1 a)E™ + B/ + bAEP® + (1 — o) EPPA + cES

Pitt

Center for Research Computing
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Density functionals
Hybrid or hyper-GGA functionals

Hybrids usually give better accuracy than LDA and GGAs.

RMS atomisation energy errors (kJ/mol) for G3 data set:
HF 649, LSDA 439, PBE 87, B3LYP 39, ~-HTCH 31.

Energies, geometries, vibrational and magnetic properties are usually more
accurate than LDA/GGAs, both in molecules and in the condensed phase.

Treating the non-local HF part of the functional may be very demanding
depending on the basis set used.

» Localized basis sets versus plane-waves

» Self-consistent hybrid functionals for solids

Pitt

Center for Research Computing



Density functionals JLrung 5

Generalised random phase methods

These functionals use information from both occupied and virtual KS orbitals.
Examples include Optimised Effective Potential (OEP) methods. In these
approaches, one requires that the density derived from a KS calculation using a
single-determinant wavefunction exactly matches the density derived from a
correlated wavefunction (e.g. from MBPT). This in turn defines the
exchange-correlation potential.

In OEP1 the reference density does not include correlation: it is an
exchange-only potential. OEP2 uses a reference density from MP2 theory, and

therefore contains both exchange (exactly) and correlation (to second order of
PT).

Other example include double hybrids (DH), mixing HF exchange and MP2
correlation:

Little is known about their performance, especially in the
solid state. Pil I
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Density functionals

Summary

There is a huge number of functionals available. Their performance depends on
the system and the properties under study. One may assume that climbing
Jacob's ladder leads to better accuracy, but this may not always be the case.

Pitt
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Density functionals
Limitations of DFT

Irrespective of the functional there are issues that DFT is currently unable to
address, for instance:

(1)
(2)
(3)

(4)
(5)

Dispersion forces (van der Waals interactions)
Loosely bound electrons in anions (S| problem)

Some kind of bonds (e.g. two-centre one-electron) predicted to be too
stable

Direct description of excited states is problematic (although some excited
state properties can be computed in TD-DFT)

Relative energies of states with different spin multiplicities can be poorly
described

Pitt

Center for Research Computing



Density functionals
Limitations of DFT

Irrespective of the functional there are issues that DFT is currently unable to
address, for instance:

mp (1) Dispersion forces (van der Waals interactions) Grimme’s correction (D2, D3)
(2) Loosely bound electrons in anions (SI problem)

(3) Some kind of bonds (e.g. two-centre one-electron) predicted to be too
stable

(4) Direct description of excited states is problematic (although some excited
state properties can be computed in TD-DFT)

(5) Relative energies of states with different spin multiplicities can be poorly
described

Pitt
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Density functionals
Limitations of DFT

Irrespective of the functional there are issues that DFT is currently unable to
address, for instance:

(1) Dispersion forces (van der Waals interactions) Grimme’s correction (D2, D3)
m) (2) Loosely bound electrons in anions (S| problem) SIC-DFT

(3) Some kind of bonds (e.g. two-centre one-electron) predicted to be too
stable

(4) Direct description of excited states is problematic (although some excited
state properties can be computed in TD-DFT)

(5) Relative energies of states with different spin multiplicities can be poorly
described

Pitt
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Density functionals
Limitations of DFT

Irrespective of the functional there are issues that DFT is currently unable to
address, for instance:

(1) Dispersion forces (van der Waals interactions) Grimme’s correction (D2, D3)
(2) Loosely bound electrons in anions (Sl problem) SIC-DFT

(3) Some kind of bonds (e.g. two-centre one-electron) predicted to be too
stable

(4) Direct description of excited states is problematic (although some excited
state properties can be computed in TD-DFT)

» (5) Relative energies of states with different spin multiplicities can be poorly
described “Broken-symmetry DFT”

Pitt
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A fundamental limitation of DFT

Static correlation aka non-dynamical correlation aka left-right correlation

Molecular Orbital Diagram for H,

H, dissociation

T Molec:ar Ort;ltal“ T .
- —— CA Coulson and | Fischer,
Atomici)rbita‘i\"\\ T 1 "‘v.,_.w""";\tomic Orbital Philos. Mag. 40, 386 (1949)
Molecular Orbital
H H, H

Open-shell singlets

R

singlet open-shell singlet .
: Pitt CRC
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Density-functional theory

Summary

e WwWwh e

Hohenberg-Kohn theorem
Exchange-correlation energy
Kohn-Sham equations
Exchange-correlation functionals
Limitations of DFT

Pitt
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Density-functional theory

References

J

Wolfram Koch, Max C. Holthausen ” ‘7““ ;
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HWY=FWyPY Slater determinant

Wave-function methods
Hartree-Fock and post Hartree-Fock

o1(1)  d2(1) ... on(1)

1/2 | p1(2 ®2(2 .. on(2
ORI e e

H(N) 6a(N) .. on(N)

Density-functional theory

W(ry ry, ..., ry) = p(r) Electron density replaces the wfn
E = E[p(r)] The energy is a functional of p(r)
E[p(r)] = EK+ Ene + EC+ Exc

Exc EBOBW PBEPWQ‘ Exchange-correlation functional
‘ veor MCYO6 cp

N5 .SDA“:'BP86 » Notation:

] P n(r) = p(r)

6 B97-
WGg6 CAM BBLVP

Easy to code PittCRC

Can be used on large and extended systems

Center for Research Computing



Simulation of extended systems

Pitt CRC
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What do we mean by an “extended system”?

ions

ic boundary condi

Period

= F(x)

F(x + nlL)

Pitt CRC
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Perfect crystals: the direct lattice R

Infinite (3D) arrays of atoms (or groups of atoms) placed on a set of
discrete points.

R,=n;a+n,b+ns;c wheren=(ny n, n;) are sets of integers

n; are integers and a, b and care primitive vectors. R,

The full lattice is created by translations. .
n=(1, 1, 1) defines the unit cell. Pltt

Center for Research Computing



Unit cell: primitive and conventional cell

Primitive cell
It contains only one lattice point and the whole crystal can be constructed

by translating it

Conventional cell

The smallest unit cells whose axes follow the symmetry axes of the crystal
structure; it may or may not be primitive and its volume is an integer
multiple of the primitive cell volume

Silicon

Pitt CRC

Primitive Conventlonal Center for Research Computing



Conventional cells

Simple Cubic

O

Cubic

Face-centered cubic

Body-centered cubic

.‘#‘

’ &

N=2

Rhombohedral, hexagonal, triclinic: one unique form each
Tetragonal: simple and body-centered
Monoclinic: simple and side-centered
Orthorhombic: simple, face-centered, body-centered, side-centered

Pitt CRC
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Bravais lattices

primitive |side-centred |body-centred|face-centred
a a a
a a a
a a a
N\ ubic '
c
a
a
N—— tetragonal e
azb#c axb# axb#c X axb#c
C C C (3
a a a a
b b b b
N— orthorhombic e
a #90° a#90
By =90° B,y =90
~—
'n 'm
N— mongdclinic I
a=f=y # 90° a, B,y #90°
c Y, Y,
a
a
a a
hexagonal trigonal triclinic

Crystallographic point groups

Sets of symmetry operations that
leave the structure of
a crystal unchanged

14 Bravais lattices x 32 MPGs
= 130 space groups

(MPGs = molecular point groups)

Pitt CRC
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Atoms in the crystal lattice

Asymmetric unit
Smallest fraction of a unit cell that, rotated and translated (according to
the space group), generates the full unit cell

Silicon Bravais lattice: face centered cubic
Point group: m3m
Space group: 227 (Fd -3 m)
Lattice constant: a=0.543 nm

Asymmetric unit Primitive cell Conventional cell

Special position >
P P NB: most ab initio codes PlttCRC

reqUire a primitive cell Center for Research Computing




X-ray diffraction

Cell parameters,
space group,
special positions

Lysozyme crystal P ittCRC

G. Katona et al. DOI: 10.1063/1.4931825

Center for Research Computing


http://dx.doi.org/10.1063/1.4931825

The reciprocal lattice G

Set of vectors G,, = n;b; + n,b, + n;bsthat are Fourier transforms of the
real lattice vectors R,:

b, =a*
elmRn =1 5 G, -R, = 2nN b, = b*
b, =c*

For instance, for a simple cubic direct lattice:
G,,=n;(2m/a) + n,(2m/b) + n;(2m/c), witha = b = c.
The space in which G is defined is called reciprocal space (or G-space).

NOTE
A plane wave e™** is a function of both k and x: it oscillates with
periodicity 27” in real (direct) space and with periodicity

2T
— in its reciprocal space. P
x 1t

Center for Research Computing



The Brillouin zone

A uniquely defined primitive cell in G space: volume in G space that is
closer to the origin than to any other lattice point

a)
[ ] [ ] [ ] .\ [ ]
° ° e —Pp o e
2D SC [ ] [ ] [ ] [ ] \.
Brillouin zone
b)
[ ] [ ]
2D hex . 3D FCC

[ ]
Brillouin zone

The Brillouin zone in direct space is called

Wigner-Seitz cell. PittCRC
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Electrons in crystals: Bloch waves

In a periodically repeated environment, the wavefunctions of the
electrons have the Bloch wave form (Bloch theorem):

2N va S NANIUAN IR

Ro R R, Rs Ry

n is the band index and the reciprocal lattice vector k is called the crystal
wave vector. U, () has the same periodicity of the lattice.

For any vector G, Yy,(r) = Yu6)n(r). Therefore, we can restrict the
calculations to only those vectors k contained in the Brillouin Zone.

We can describe the properties of an infinite crystal in P- CRC
terms of a finite volume in reciprocal space. ltt
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Energy levels in molecules and in solids

A

,
Op, ™

A A A i r T ks A A

L 1 1 T2p, T2p, ‘

2p 2py, 2p, _/I_IL_/]_L ’ 2_px2_p)’2_p1 MOleCUIeS

L

e . Discrete energy levels

O2,

n (MO energies)

O (AOs) 0,(MOs) O (AOs)

-~ D D D D Solids
o D __________________________ Energy bands
44]1]

p-type intrin. n-type

[ ]
Metal Semimetal Semiconductor Insulator Pll ' CRC

Center for Research Computing
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Band structures and electronic densities of states

R3m@130 GPa |

0 02 04 06 08

DOS (states/eV/f.u.)
H

—S
J
>
2
[]
(=
w

Im-3m@200 GPa

DOS (states/eV/f.u.)

[ ]
D. Duan et al., Scientific Reports 4, 6968 (2014) P lttc RC
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MAPDBT,

MAPDbI,

Angle-resolved photoemission spectroscopy (ARPES)

~
o

O
Py
1
\

\
X
py)

o

_ 25 2.0
S
e energy
& 3.04 254 analyzer
g photon
‘; 3 source
S 3.0
3
S5
® 404 - 4

3534

4.5 VA o
. 4059 hv e ,5
: 9 ;

d 1 f 1.2

1.4+ i
- 1.6 sample
3 1.8 :
5 | ¢
? 20 X
w
) 22
3 2.4
@

26

K. Wang et al., Crystals 10, 773 (2020)
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Summary

- Real space lattice R

- Add atoms: crystal structure

- Reciprocal lattice

- Brillouin zone

- Calculations are restricted to k vectors in the Brillouin zone

Pitt

Center for Research Computing



DFT software

Pitt CRC

Center for Research Computing



Two approaches

1) Code your own DFT software
2) Use existing academic/commercial or open-source packages:

ABINIT, ACES, ADF, Atomistix, BigDFT, CADPAC, CASTEP,
CFOUR, COLUMBUS, CONQUEST, COosM0S, CP2K, CPMD, CRYSTAL,
DACAPO, DALTON, DFTB+, DFT++, DIRAC, DMol3, EXCITING,
FLEUR, FHI-aims, FreeON, Firefly, GAMESS (UK), GAMESS
(US), GAUSSIAN, GPAW, hBar Lab, JAGUAR, Materials Studio,
MOLCAS, MOLPRO, MOPAC, MPQC, NWChem, OCTOPUS, ONETEP,
OpenAtom, OpenMX, ORCA, PLATO, PQS, Priroda-06, PSI,
PWscf, Q-Chem, Quantum ESPRESSO, SPARTAN, SIESTA,
TURBOMOLE, VASP, WIENZ2Kk,

Pitt CRC
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How do DFT codes differ from each other?

Largely in the basis sets they use and in whether they work for molecules
(e.g., Gaussian), for extended systems (e.g., VASP) or for both (e.g.,
CRYSTAL, CP2K).

Basis set functions are used to represent continuous functions (like the
electron densities and KS orbitals) in discrete form. In this way, operations
can be expressed in matrix form and handed by a computer.

STO STO

STO-3G
STO-1G

primitives

-
- .

A computer only stores and manipulates basis set coefficients, not the
basis set functions themselves. Pltt
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Kohn-Sham equations in matrix form

th¢,’ = €iq5,' Kohn-Sham equations

Mba5|s
gb,- — E CaiXa Basis set expansion
(87
hxsC = SCe Matrix representation

hag = (Xal|hks|x3)

Sas = (XalXs) Pitt CRC
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Basis set functions

The choice of basis set depends on the system.
Local basis sets (like Gaussian functions or Slater

orbitals) are mostly suitable for molecular systems.

However, they can also be used for periodic
systems.

Floating basis sets, like plane-waves, are ideal for
infinite systems.

Different basis sets can be used together, to speed
up specific parts of the calculations.

Gaussian, ADF, ...

CRYSTAL

VASP, ABINIT, ...

CP2K

Pitt

Center for Research Computing



Plane-waves

Pitt CRC

Center for Research Computing
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Plane-wave codes

John von Neumann Institute for Computing

Ab Initio
Molecular Dynamics

and Ad J d

Ab initio molecular dynamics: Theory and
Implementation

Dominik Marx and Jiirg Hutter

published in

Modern Methods and Algorithms of Quantum Chemistry,
J. Grotendorst (Ed.), John von Neumann Institute for Computing,
Jilich, NIC Series, Vol. 1, ISBN 3-00-005618-1, pp. 301-449, 2000.

© 2000 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or for profit or and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

Cammrinos http:/iwww.fz-juelich.de/nic-series/

1
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Plane-wave basis set W\/\/\

FEY (1) = N exp iG]

N = 1/\/5

- PWs form an orthonormal set

- They do not depend on the atomic coordinates: they have no origin

- They represent all space in the same “unbiased” way

- Computing forces is much easier than with atom centered basis sets

- The quality of a calculation can be improved by simply adding more PWs
- They do not suffer from BSSE and linear dependence issues

Pitt
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Plane-wave expansion

Orbitals (r,k) = %ZCZ (G, k)exp[i(G + k) - r]
G
1
Density n(r) = q Z/dk fi(k) Z k)ci(G, k) expli(G + k) - r]
i G,G/

= Z n(G)exp[i G - r]

G

ci(G,k) (Complex) PW coefficients

This is the data stored on a computer;
the PW coefficients change during the SCF

Fourier transform: n(r) < n(G) PittCRC
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Brillouin zone sampling

n(r) = éZ@ﬁ(k) > €i(G KGR expli(G 4 K) -x

= Z n(G)expli G - r]
G

/dkﬁzk:wk

(1) Monkhorst-Pack mesh (1976)
(2) I'-point approximation

Pitt CRC
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Truncation: the kinetic energy cutoff

The accuracy of a PW calculation depends on a single parameter, E;

Truncate the PW expansion at
each k-point to keep only those PWs
whose kinetic energy is lower than E;

1
5 [k+ G|? < Eeut

1 3/2
pr — ﬁ SZ Ecut

Pitt CRC
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Truncation: the kinetic energy cutoff

Ec

Increasing the PW

kinetic energy allows
one to describe finer
details in direct space

Functions oscillating
rapidly in space require
PWs with very high
kinetic energies

Pitt CRC
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Pseudopotentials and PAW
P (Gaussian basis sets, in contrag

to PWs, treat the
Coulomb singularity analytically

1 2 [ 5. i
| /I = 7 e ! (r-r) dt.
r—r 7 Jo

(Singer, 1960)

J

Core region
W
. Pseudopotentials
- remove the singularity
- remove wavefunction oscillations

! - reduce the number of electrons

/

’
/
Y
, vV
/

/

- Local versus non-local pps
- Norm-conserving versus ultra-soft pps . ~ ~
- Projector augmented wave (PAW) method Pltt(JR(J

Center for Research Computing



The Hartree (or Coulomb) potential

* n(r) and n(G) contain the same information

* We can convert one into the other using Fast Fourier Transforms
(FFTs), which scale as N, log (N,,)

* Some components of the Hamiltonian are easy to compute in real
space (e.g., xc potential), others in G-space (e.g., kinetic energy)

n(F)n(7) n(G)?
//drdr F—Fll = 27Tchll z@; G2

R space G space

If we include the nuclear charge in n(r), n(G=0) is the total charge
G=0 term !l = charge neutrality and background charge

Unfortunately, this technique cannot be used

efficiently with the non-local exchange operator Pitt(:R(:
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The Hartree ( or Coulomb) potential

Pitt CRC

Center for Research Computing



Molecular calculations with plane-waves

First method (for neutral molecules): supercell approach

This method can be applied to surfaces as well.

Extremely inefficient, because a large number of PWs
are used to describe the empty volume of the supercell,
and large cut-offs are required to describe the electron

density distribution in the molecular region. PittCRC
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Molecular calculations with plane-waves

Second method (for charged molecules too):
cluster boundary conditions

Separation of short- and long-range Coulomb interactions.

The contribution to the Coulomb energy from the second term are

1 . ot(r) 1
2 //dr dr’ Mot (I) ot (1) = 5 /dr Vi (r)ntot(r)

v —r'|

which can be computed by solving a Poisson’s equation

V2V (r) = —47n(r)

with boundary conditions

fio 0w == PittCRC
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Plane-waves

The most popular approach to solid state calculations
Accuracy controlled by a single parameter (E_,)
Relatively easy to code and parallelize

Atomic forces for AIMD are easy to compute

Extensive libraries of pseudopotentials and PAW projectors available
Scales reasonably well with PW number: N,,log (N,,)

X Advanced DFT functionals (e.g. hybrids) are expensive

X Simulations on non-periodic systems (molecules, surfaces, etc.) are
extremely inefficient

X System sizes are limited to a few hundred atoms

Pitt

Center for Research Computing



Real space methods:
Local basis sets

Pitt CRC
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Nearsightedness of electronic matter (NEM)

Footprint of w

Prodan & Kohn, 2005

For a many-electron system, the density

h

change m_duced by w(r’) E:.lt rodecays Walter Kohn
monotonically (exponentially or
polynomially) with R W Kohn, Phys Rev Lett 76, 3168 (1996)

W Kohn, Phys Rev 113, A171 (1964)

NEM provides a rigorous justification for
local-basis set and “linear scaling” P
electronic structure methods lttCRC
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Real space DFT codes (a few)

Numeric atom-centered orbitals
FHI-aims, SIESTA®, ADF-BAND, CONQUEST", ONETEP"

Gaussian basis sets
AIMPRO, CRYSTAL

Linearized augmented plane-wave (LAPW)
Wien-2k, FLEUR, exciting, Elk

Real space grids and wavelets
octopus, GPAW, BigDFT"

(* Linear scaling codes)

Pitt CRC
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CRYSTAL: a quantum-chemical code for periodic systems

%’;O(x, Y, 2) = Nx“ybzce_crz (Contracted) Gaussian-Type Orbitals (GTOs)
%—electron
mte]grals ( ""'Vl I pT) J
SCF

e screening
e symmetry

optical correlation
properties corrections

st and | (e
vibrational 5
: properties
properties  CONVENTIONAL CELL PRMITVECELL

e insulators, semiconductors

e metals

e surfaces, polymers, molecules .
A Pitt CRC

http://www.crystal.unito.it/
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Crystal orbitals and SCF
Self-consistent field equation
Fkck — skckgk

Each crystal orbital vi(r, k) is a combination of N Bloch functions ¢,(r, k),

N
i(r, k) = D Cujou(r, k).

The BFs are properly symmetrised linear combinations of atomic orbitals, each of
which is expressed in terms of a set of atom centred Gaussian basis set functions

Xu(r = R)v 5
Su(r k) = N2 3" ey, (r — R),
R

where the sum is over the real-lattice vectors R, and N — oo.

Scales (th tically) as N3 .
cales (theoretically) as Nyo PlttCRC
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Crystal orbitals and SCF

o o
e

.XB

@ o
o o

Pitt
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Gaussian basis sets

The quality of a CRYSTAL calculation depends crucially on the choice of the
basis set {x,.}

Standard Gaussian basis sets (Gaussian, NWChem, GAMESS, etc) can be used
with CRYSTAL.

Usually very diffuse basis functions are not required in solids, unless one is inter-
ested in excited state calculations, for instance.

Basis sets can be optimised for solids: this usually involves varying the number
of contracted Gaussians per shell (s, p, sp, d, etc).

The energy is variational with the basis set size.

Possible problems:
1. Linear dependence

2. Basis set superposition error (BSSE)

Pitt CRC
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Gaussian basis sets

Calculation (*)

Full geometry optimization

XC functional HSEO6 (PWs) B3LYP HSEO06
Lattice parameter 4.2530 4.2853 4.2603

(+0.38%) (+0.37%) (+0.22%)
Dispersion D3 D3 D3
K-mesh 7X7x7 7X7x7 7x7x7
Time (hours) 13.5 0.09 0.29

(~5 min) (~17 min)

Band gap 2.052 2.149 1.926

Good for accurate all-electron calculations on periodic systems,
surfaces and polymers. Can treat easily non-local density functionals.

Pitt CRC

(*) Cu,O data from Aleks Zivkovi¢ (Utrecht University)
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Two extremes

AVAVAVAVA

Plane-waves Gaussian functions

- Floating

- Delocalized in real space
- FFTs

- Need pseudopotentials
- Easy to code

- Easy to parallelize

- Nyylog (N,y) scaling

- Atom centered

- Localized in real space

- Recursive integral calculation

- All-electron calculations possible

- Difficult to code in periodic systems
- Parallelization is highly non-trivial

- Npo3-N scaling

Pitt
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The Gaussian/plane-wave method

Pitt CRC
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The Gaussian and plane-wave method (GPW)

cpgk

Atoms centered Gaussians are used to represent the wavefunction and
the Kohn-Sham matrix. PWs are used to represent the electron density
and to compute efficiently the Hartree potential.

The representation of the wavefunction is compact, which allows for
efficient algorithms with a relatively small memory footprint.

For large systems, this method scales linearly, because the Kohn-Sham
matrix and the density matrix are sparse.

https://www.cp2k.org/about PittCRC
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https://www.cp2k.org/about

The Gaussian and plane-wave method (GPW)

CP2K is well suited for large-scale
AIMD simulations

It requires specifying both a
Gaussian basis set and a set of
pseudopotentials

For finite systems, cluster
boundary conditions can be used

Wide variety of xc functionals
available, but hybrids remain
computationally very expensive

https://www.cp2k.org/about £¥E&

Center for Research Computing


https://www.cp2k.org/about

Example

/xhome/crc/leb140/WorkshopFall2024

Total energy calculation (DFT/BLYP with van der Waals corrections) of a periodic
box of 64 water molecules (192 atoms); DZVP basis set, E_,,=280 Ry

cut

Pitt CRC

Center for Research Computing



Software: Summary

- Plane-wave codes are widespread and generally easy to use

- A single parameter E_,; determines the accuracy of the calculations
- They work well on medium size systems

- All of them can do AIMD

- Real-space codes are more complex to use

- They can be better for specific tasks (e.g., modelling surfaces)

- Some of them can treat advances functionals, like hybrids

- AIMD with atom-centered basis set code may be complicated to do

- The GPW method attempts to exploit the benefits of both

Pitt
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Talk summary

This talk:

1. Density-functional theory
2. Simulating infinitely large systems
3. Software: Plane-waves, Gaussians, GPW

A (possible) future talk:

1. Abinitio molecular dynamics
2. Modelling excited states and photochemistry
3. Machine learning in electronic structure theory

Pitt
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