

Rethinking Computational Catalyst Searches with Alchemical Perturbation Density Functional Theory (APDFT) Charles Griego, Emily Eikey, Lingyan Zhao, Karthikeyan Saravanan, John A. Keith

April 6, 2021 Pitt ARC Symposium

Richard King Mellon Foundation

Background

of alloys screened

 Alchemical Perturbation Density Functional Theory (APDFT) estimates catalyst descriptors with minimal computational cost.

1. Karthikeyan Saravanan; John R. Kitchin; O. Anatole von Lilienfeld; John A. Keith; J. Phys. Chem. *Lett.* **2017,** 8, 5002-5007.

John A. Keith; *Electrochem. Soc. Interface, 2020,* 29, 63 2.

Scheme for calculating BE with APDFT

$$\partial_{\lambda} \Delta E^{0} = \sum_{I} \Delta \mu_{nI} \, \partial_{\lambda} N_{I} = \begin{bmatrix} \Delta \mu_{1} & \Delta \mu_{2} & \cdots \end{bmatrix}$$

3. Charles D. Griego; John R. Kitchin; John A. Keith; Int. J. Quantum. Chem. 2020, 121:e26389

BE Predictions: Pt, Pd, and Ni Alloys²

1. Charles D. Griego; John R. Kitchin; John A. Keith; Int. J. Quantum. Chem. 2020, 121:e26389 Karthikeyan Saravanan; John R. Kitchin; O. Anatole von Lilienfeld; John A. Keith; J. Phys. Chem. *Lett.* **2017,** 8, 5002-5007.

BE Predictions: TiC, TiN, and TiO Materials³

Reaction Pathways and Activation Energy¹

Charles D. Griego; Karthikeyan Saravanan; John A. Keith; Adv. Theory Sim. 2019, 2: 3. 1800142

Identifying Shortcomings with APDFT¹

Breaking Down Sources of Error¹

APDFT errors sorted by N_T , ΔZ , and θ

APDFT errors by adsorbate type

Charles D. Griego; Lingyan Zhao; Karthikeyan Saravanan; John A. Keith; AIChE J. 2020, 66:e17041

• Nuclear charge change $\Delta Z = 1, 2, \text{ or } 3$

Overall Observations:¹

- Errors increase with N_{T} and ΔZ
- •Errors increase with θ
- Errors decrease with hydrogenation of the central atom in the adsorbate

