Rethinking Computational Catalyst Searches with Alchemical Perturbation Density Functional Theory (APDFT)

Charles Griego, Emily Eikey, Lingyan Zhao, Karthikeyan Saravanan, John A. Keith

April 6, 2021
Pitt ARC Symposium
Background

- Traditional Kohn-Sham density functional theory (KS-DFT) calculations increase the demand of computational resources.

Alchemical Perturbation Density Functional Theory (APDFT) estimates catalyst descriptors with minimal computational cost.

Scheme for calculating BE with APDFT

\[\Delta E^0_{\lambda=0} + \Delta E^S_{\lambda=1} \]

\[\Delta E^0_{\lambda=1} \]

\[\Delta E_{\lambda=1} \]

\[\lambda = 0 \]

\[\lambda = 1 \]

Binding Energy Predictions: Example Case

- OH* BE on 32 alloys of Pt
- Pt → Au ($\Delta Z = +1$)
- Pt → Ir ($\Delta Z = -1$)
- Data point size corresponds to distance of altered site from OH
- 0.05 eV mean unsigned error

BE Predictions: Pt, Pd, and Ni Alloys

- Predicted 32 reaction pathways from one NEB calculation.
- Activation energies agree within 0.3 eV versus DFT.

BE Predictions: TiC, TiN, and TiO Materials

- Predicted 32 reaction pathways from one NEB calculation.
- Activation energies agree within 0.3 eV versus DFT.
Identifying Shortcomings with APDFT

- Adsorbates on Pt alloys: \(\text{CH}_x, \text{NH}_x, \text{OH}_x \) (\(x = 0-3 \))
- Coverage \(\theta = 1, 1/4, 1/9 \)
- Alloy variations:
 - \(\# \) of transmutations \(N_T = 1, 2, 3, 4 \)
 - Nuclear charge change \(\Delta Z = 1, 2, 3 \)

APDFT errors sorted by \(N_T, \Delta Z, \) and \(\theta \)

- APDFT errors by adsorbate type
 - Overall Observations:
 - Errors increase with \(N_T \) and \(\Delta Z \)
 - Errors increase with \(\theta \)
 - Errors decrease with hydrogenation of the central atom in the adsorbate

Correcting APDFT with Machine Learning

- ML Workflow
 1. Input: Define a hypothetical alloy by making transmutations to a reference catalyst surface
 2. Fingerprinting: Label transmuted sites as 1 and remaining sites 0
 3. Feature Vector Construction: Record dopant fingerprints, \(\Delta Z, N_T, \) adsorbate type, \(\theta \), and dopant in an array
 4. ML Model: Predict error between APDFT and DFT (\(\text{Error}_{\text{ML}} \))

- ML-corrected APDFT BE prediction:
 \[\text{BE}_{\text{APDFT}} + \text{Error}_{\text{ML}} \]

Fingerprinting Example:

- 3x3 Unit Cell (\(\theta = 1/9 \))
- NH Adsorbate