e niversity of
. %lttSb}{ll‘gh S L
rogramim N g
with CUDA

Cheng(chx33@pitt.edu), Kim, Leonardo, Fangping, Daniel, Nick

Center for Research Computing

University of Pittsburgh

Table of Contents

APart 1:Introduction to C/C++ programming

APart 2:GPU hardware & architecture

APart 3:Introduction to CUDAC/C++

APart 4: Practical Examples

Workshop Content

Actest.cpp: An example C++ program
AcudaHello.cu: A first CUDA program

Actest.cu: GPU equivalent of ctest.cpp
Accompute.cu: CUDA program for 2D computation

AAIl the above files with " full" extension: Complete source files ready
to be compiled

Aanimate2D.py: Python script that generates animation from output
files of ccompute.cu

ACUDA_workshop.pptx®resentation slides!

Download workshop material

on cluster:
cp -r/ ihome /workshops/ GPU_ CUDA shared $SHOME/

Part 1: Introduction to C/C++ Programming

Programming in C/C++: Intro

AElementary data types and storage sizasol (1 Byte)char(1 Byte),
Int (4 Bytes)float (4 Bytes)double (8 Bytes); 1 Byte = 8 Bits [0...255]
AModifiers:signed, unsigned, long, short
AGenericvoid
AExamplelong long unsigned inf0 to 18,446,744,073,709,551,615)
ADetermine storage size in bytesizeof...)
AAllocate storagemalloq(...)

APointers: Stores address of variabiet data {nt *i, double* x)
ADerived data types: struct, class
AConditionalsif(condition==True){carry out a; } else { carry out b;}
AComments?/Comment, or /*multi line comment block*/

Programming in C/C++: Intro

A Operators:
AUnary: Increment/Decrement(++), Negation(!) Address, dereference(&,*)
ABitwise: And(&), Or(]), Left/right shift (<<, >>)
ALogical: And (&&), Or (||), Equals (==)
A Arithmetic: + -, *, /, %(modulo)
ATernary: x = (Condition)? a: b equivalent to if(Condition) x=a; else x=b;
AMay be redefined for derived data structures

A Loops:
Afor(i=0;i<N;i++) {instructions;}
Awhile(condition==true){instructions;Ho{instructions}while(condition)
AEXxit loop:break
AScope: Variable declared within a loogt visible outside a loop!

Paradigms in C/C++

AProcedural programmingdrganize large program into smaller parts,
l.e. subroutines/modules/functions

ADeclaration: Specify data types of all inputs and output for
function/subroutine, Examplest myFunctiorfint, double), void mySulf)

A Definition: Body of instructions for function/subroutine, return value must
match declaration, Exampleit myFunctioriint a, double b) {double result;
Instructions; return result;}

Alnvoke function: type of input arguments must match declaration! Example:
Int a; double b; double c =myFunctiorta,b);

AScope: Variables only visible within the function in which they are declared!
AObjectoriented programmingAbstraction and encapsulation

AGroup data and functions intocass
A Control access of internals from outsigeiblic, private

Typical C/C++ Program

A#tincludeheader files containing declarations of functions, constants,
and datatypes, read by pigrocessor

AStarts withmain function, may or may not return value upon exit;
AVariablesnustbe declared before they can be used!

AProgramwritten in plain text file ending with *.c or &pp,
IDEs(Eclipse, Code::Blocks, Visual Studio, ...) can be helpful tools

ASpacing symbols (space, new line, tab) don't matter
AProgram must be built before execution

AOptional: Invoke routines contained in librari@sd link them to own
program, must be declared within program!

Example(ctest.cpp): Prime factorization (main)

#include<iostream>

#include<stdlib.r>

#include<chrono>

usingnamespacestd;

usingnamespacestd::chrong;

longlongunsignedint chkprime _cpulonglongunsigned int);

iInt main(int argg char*arg\]) {
char*eptr;
longlongunsignedfactor; //main variable declarations
unsignedonglongNstart = strtoull(arg\{1],&eptr, 10); //read number from terminal

auto start = high_resolution_clocknow(); //start clock
factor=chkprime_cp(Nstart); // check for prime factors

if(!factor) cout<<Nstart<<' is prime!'<<endl|

elsecout<<Nstartc<' has prime factor £<factor<<endl; //output prime factor

auto stop=high_resolution_clocknow();

auto duration = duration_castmicroseconds(stop - start);

cout<<'Time in microseconds<<duration.counf) <<endl; //output elapsed time
return O;

10

Example: Prime factorization (Function)

longlongunsignedchkprime_cp@longlongunsigned int Number)

{

unsigned long range = (unsigned long) sqrt(Number);

for (longlongunsignedi; ;i++)//Fill in the loop to search for prime factor, exit when found!

{
}

return O;

}

Generate binary <OUTPUT> with C++ compiler:
module load gcc/8.2.0
g++ -0 <OUTPUT> <SOURCE.cpp>

Execute binary: ./<OUTPUT> <INPUT PARAMETERS>
Full compilable source file: ctest_full.cpp

11

Part 2: GPU Hardware & Architecture

Why GPU Programming?

AGPUs pushed the "power wall" hit by mudtre CPUS

AMassively parallel architectures developed as a response to high
demand from gaming industry

AGPU's have many small processors: High latency, high parallelism
Aif
A (1) program is computationally intensive (not spending much time
transferring data) and

A(2) massively parallel, so computations can be independent.

consider using the GPU!

Overview

AGPGPU (or simply GPU) is a device specialized for compute intensive,
highly-parallel computations

AProgrammable using general purpose programming with extensions
special libraries and instruction set
Ae.g. Nvidia CUDAAnN extension of C/C++ (Also available for Fortran)
ACUDA stands for Compute Unified Device Architecture

AWe will discuss GPU hardware architecture, CUDA programming modke
CUDA runtime environment and some examples

Why understand hardware?

AParallel programming is fundamentally linked to the underlying
hardware architecture

AUnderstanding of the underlying hardware enables a programmer to
align their code well to the hardware

ASignificaniperformance gainsould be obtained by correctly
mapping the CUDA code to GPU architecture

ASignificanperformance lossedy mismatching CUDA code to GPU
architecture

CPU and GPU assembly

AGPUs cannot work independently in a computer!
Aa CPU is needed to "host" the GPU
ACPU sends instructions and data to GPU and receives results

AGPU is usually mounted on the rGlot
APCle is peripheral component interconnect express

Aif you own a PC, you can buy a GPU and plug it in and you are all set
to do GPU programming!

GPU Components

AOutermost assembly consists of the circuit board and cooling system

ACircuit board consists of:
AGPU "chip”
Amemory

AGPU "chip" is organized as a collection of Streaming multiprocessors
(SM)

AEach SM is a collection of Streaming Processors (SP)
AOne SP is a GPU "core"

AMemory is organized as per thread local memory, per béteked
memory, all blocks accegfobal memory

Additional Components

AGigathreadylobal scheduler: distributes thread blocks to Streaming
Multiprocessors

AWarp scheduler: local thread scheduler at the SM level, 32 threads
bundled together

AFMA: Fused Multiplication Addition unit that could do (A*B+C) in one
step

CPU vs. GPU

Core Con Core
L1 Cache L1 Cache

Core Con Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache
L2 Cache

DRAM

Central Processing Units Graphics Processing Units

Block Diagram of a GPU (Fermi Architect.)

CUDA Core

Formi's 16 SM are posioned arcund a common L2 cache. Each 5M is & vertical
L0 atrmp that contain an orange portion (schedubsr and dispatch), o gresn portion
(execution wnits), and ight blue portions (register file and L1 cache)

20

How do we write program for the GPU?
CUDA from NVIDIA

Source: NVIDIA CUDA Programming Guide

Latest GPU resources at CRC

"Standard" A100 ("Ampere") partitions on GPU cluster

A 2 sockets per node, 64 CPU cores/socket

A 1 TBRAM/node

A 4 NVIDIA A10GPUs/socket

A 40 GB memory per GPU

A Max of 16 CPUs per GPU

3 X86_64 nodes with 8 NVIDIA A100 40GB GPUsMddank
2 X86_64 nodes with 8 NVIDIA A100 80GB GPUshkigdak
Older nodes

A Nvidia GeForcgtx 1080
A Each node has 4 GPUs
A Each GPU has 2560 CUDA cores

A More at: https://crc.pitt.edu/resources/

Part 3: Introduction to CUDA-C/C++

50K feet overview of CUDA programming

How GPU Acceleration Works

Application Code

Compute-intensive Functions

Rest of Sequential
CPU Code

—

25

20K feet overview of CUDA programming

ACUDA program consists of code to be run onhbst, i.e. the CPU, and
code to run on thalevice I.e. the GPU

AFunction that is called by the host to execute on tie¥iceis called a
kernel

ARunning instance of a kerneltigead
AThreads in an application are groupedincks
AEntirety of the blocks is called tlyid of that application

What is grid-block-thread business?

AOrganization ofhreadsfor execution over GPU cores

AA thread is a minimal unit of execution

AKernel becomes thread at runtime

AA group of threads is a block

AA collection of blocks is a grid

ABasic idea: Hide GPU latency with massive data parallelism!

AOne grid is scheduled and launched per kernel

Aprogrammer must provide thehape and size of the griethen invoking a
CUDA kernel!

A 2-D grid-block-thread diagram

Grid

T WG
S VWISV
% WA VWD
ke MWAS VWS
O vz -
= WWSWws

~AMAD G VWD
S VWMWY
O -
0 M S VWY
M AMMS MWD S
O a2 =
-

[V VY I V.V

S a2
S VWMWY
= MMS WG
E MWDV
O MM AW
= WAMSWMT

= = -
o WS YWWYG
S WIS WM
% MY Z VD
m M VWA
O M2 A -
-

— VYWMS VYWD

28

Two representations

Hardware

Software representation

Goal: Map program to GPU hardware

llll g

*/

Hardware

Software representation

CUDA Jargon

ATypeFunctions
A global _: a CUDA kernel callable by host
A device : a CUDA kernel callable by device
A host__: aregular function that runs on host

AKernel invocation from host: kernel<<<blocks, threads>>>(args)
A dim3gridDim how many blocks in grid in terms'd€ times Y times Z"
A dim3blockDim how many threads in a block in terms"aftimes Y times Z"
A dim3blockldx location of a block in grid in terms of (x, y, z)
A dim3threadldx location of a thread in a block in terms of (x, y, z)

Agepenging upon the problem;,12-, or 3 dimensions of the elements may
e use

ASynchronization after kernel call = waiting on host for kernel to finish:
cudaDeviceSynchronize()

Example(cudaHello.cu): Say Hello in CUDA

#include stdlib.h>
#include <uda.l»
#include stdio.h>

__global__ voidkernelHelld) {
printf("Saying 'Hello' from blocki%hread %\n"); //fill in the thread and block Id

}

int main(intargg char *arg])
{

/lread number of blocks and threads from terminal
int nblocks=atoi(arg\1));

int nthreads=atoi(arg\j2]);

/fill in kernel call

cudaDeviceSynchroni@e

return O;

Compile and run a CUDA program on CRC

GENCODE

A100: arch=compute_80,code=sm_80
V100:arch=compute_70,code=sm_70 :
GTX1080arch=compute_61,code=sm 61 After loadinggcg

TitanX arch=compute_52,code=sm_52 |oad CUDA module
Nvidia CUDA

Binary Source code

compiler j
\ \Qodule load cuda/ll.(//

nvcc 1 gencode $GENCODE o <OUTPUT> <SOURCE.cu>
Crc - interactive.py - g (optona: -p<GPuPart>) |t <T> #interactive
J/<OUTPUT> <INPUT PARAMETERS>

|

Execute compiled binary on GPU node

Grid-block-thread arithmetic

Athere are 4 blocks in a grid and 16 threads in a block. How many
threads in the grid?

A16 * 4 =64
AAssuming there are 2048 thread and the block size is 512, how many

blocks will be In the grid?
A(ceil)2048/512=4

Agiven aone dimensionalgrid of size 2 blocks and block size 32
threads, how will you find location ofrthread in terms oblockidx
blockdimandthreadidx?

Anth thread =threadldx.x+ blockDim.x blockldx

0N OA DN

8 parts of a CUDA program

Setup inputs on the host (CRidcessible memory)
Allocate memory for inputs on the GPU

Copy inputs from host to GPU

Allocate memory for outputs on the host
Allocate memory for outputs on the GPU

Start GPU kernel

Copy output from GPU to host

Free up all memory upon completion

Newer CUDA versiongnified memory, only need to be declared and allocated once for
GPU and CPU (Stepd 2

Let's see the 8 parts for a common example:
vector add

C_

36

1: Initialize inputs on host

double* h a;
double* h'b;
double* hc;

Int N=256:

h a double*)malloc(N* sizeof (double
h™b double*)malloc(N* sizeof (double
h'c double*)malloc(N* sizeof (double

for (Int 1=0;1<N;I++){
h_a H <VALUE a>;
h_Dbfi

\ <VALUE b>:

2: Allocate memory for inputs on GPU

double* d _a;
double* d Db;

cudaMalloc (&d a, N* sizeof (double));
cudaMalloc (&d b, N* sizeof (double)),

3: Copy inputs from host to GPU

cudaMemcpy(d a, h_a, N* sizeof (double),
cudaMemcpyHostToDevice);

cudaMemcpy(d b, h b, N* sizeof (double),
cudaMemcpyHostToDevice);

4: Allocate memory for outputs on host

h ¢ =(double*) malloc (N* sizeof (double));

5: Allocate memory for outputs on GPU

double* d c;
cudaMalloc (& d c, N* sizeof (double)),

6: Launch GPU kernel

/luse 1 - dimension for both grid and block sizes
Int blockSize = 256;

Int gridSize = (int) ceil((float) N/ blockSize);

/| Execute the kernel
add<<<gridSize, blockSize >>>(d a, d b, d c,N);

7: Copy output from GPU to host
3: Free memory

cudaMemcpy(h c, d c, N* sizeof (double),
cudaMemcpyDeviceToHost);

cudaFree (d c);
free(h_c);

The "add" kernel

[ICUDA kernel. each thread takes care of one
element of ¢

__global void add(double *a, double *b,
double *c, Int n)
{

//get our global thread ID
iInt 1d= threadldx.x + Dblockldx.x *blockDim.x ;
//make sure we do not go out of bounds
If (Id < n) c[id] = a[id] + bl[id];
}

Example(ctest.cu): Prime factor with CUDA

int main(intargg char *arg\])
{
char *eptr;
unsigned londong Number =strtoull(arg1],&eptr, 10);
int nthreads-atoi(arg2]);
int nblocks=atoi(arg\{3]);//read number of blocks and threads from terminal

longlongunsigned #_ip;

longlongunsigned* ip = (longlongunsigned*)mallocgizeoflonglongunsigned));
*ip=0;

cudaMallog(void**)&d_ip, sizeoflonglongunsigned));

cudaMemcpyd_ip, ip, sizeoflonglongunsigned) cudaMemcpyHostToDevige
auto start =high_resolution_clocknow();

/ffill in kernel call to check primes

cudaMemcpyip, d_ip, sizeofint), cudaMemcpyDeviceToHJst
if(!* ip) cout<<Number<<" is prime! "end|,
else cout<<Number<<" has prime factor "<p&<end}

auto stop =high_resolution_clocknow();
auto duration =duration_castmicroseconds>(stopstart);

cout<<"Time in microseconds: "dkration.count) <<endl;
cudaFreéd_ip);

free(p);

return O;

Kernel: Prime factor with CUDA

__global__ voidsprime_devic@onglongunsigned #_ip, longlongunsigned Number, lonlgngunsignedsqg_n {

/IFill in the values for start and end indices, depending on block and thread Id
long unsigne@vgsSize ;
long unsignedtart_index=;

longlongunsignedstart= ;
longlongunsignedend=;

longlongunsignedi=istart;
do//Fill in loop to check for prime factor

{
if();

i++;

Jwhile(&& {<iend));

Fullcompilablesource file: ctest_full.cu

46

Test GPU and CPU prime factorization

Number to be factorized Number of blocks Number of threads

| e

A./chkprime _gpul286284145982677551 256 256

A./chkprime cpul286284145982677551

AExperiment with different block and thread numbers

ATry a smaller number or a composite number with small factor
AGenerate large primes onlingttps://bigprimes.org/

ASimilar idea: Search for Hash keys, Crypining

https://bigprimes.org/

Example: Animation of 2D acoustic pulse

Acoustics are describday linearized Euler equations!

2 2
PDE forpotentiadpi n 2D cyl indri cal C1H_H E.af ia_¢- =0) :
ot2 or: ror r?o062
Initial conditions for pressure pulse with width 1/a: P(t=0)=0, p(t=0)= %(r =0)= r2e—ar? cos(26)
ot

_ co 2

Exact solution fod: o(t,r,0) = I e~@/(49) ., (wr) sin(wt) cos(26) dw
0

. .) 0 3

Exact solution fop: L1, 6) = £ =f (200_)36402/(4(3} J2(wr) cos(wt) cos(28) dw
0 a

N

Bessel function of order 2

A Create animation with CUDA: Divide 2D domain into 2D grid of blocks, each block containing one single point in
domain, dim3 gridfixblocks nyblocks

A Divide each block into threads, each thread assigned a specific time

A Calculate values forall @,, t) icompyekield<d<drienthreads>>>

48

Example(ccompute.cu): Simulating acoustics

int main(intargg char *arg\])
{
char *eptr;
unsigned londong Number =strtoull(arg\{1],&eptr, 10);

int nxblocks-atoi(arg\1]);

int nyblocks-atoi(arg\2]);

int nthreads=64;

double t =atof(arg\3]);
double dt=t/(nthreadsl);

int ntotal=nxblockg nyblocks

dim3 gridaixblocks,nyblocRs//generate 2D grid of blocks

double d_f;
double* f = (double*)malloctizeof{double)*ntotal* nthreads;

cudaMallog(void**)&d_f, sizeofdouble)*ntotal* nthreads);
cudaMemcpyd_f, f, sizeofdouble)*ntotal* nthreads cudaMemcpyHostToDevige

/IFill in kernel call to calculate field values

cudaMemcpyf, d_f, sizeofdouble) *ntotal* nthreads cudaMemcpyDeviceToHQst
writeOutput(f,nxblocks,nyblocks,nthreajigwrite output files

cudaFreéd_f);

free(f);

return O;

Digression: Multidimensional representation
of grid and block

In the previous slides, we used:

Int blockSize = 256;

Int gridSize = (int) cell((float) N/ blockSize);

this is OK since we are want to arrange threads irdarfensional setup.
we could have written the above two lines as follows without any problems:
dim3 DblockSize (256, 1, 1);

dim3 gridSize ((int) ceil((float) N/blocksize.x,1,1);

vecAdd <<<gridSize , DblockSize >>>(d a, d b, dc, N)

Example(ccompute.cu): Simulating acoustics

__device__ void eval(double*f, int Id, double r, doubleostheta,doubld)
{
doubleomega j
doubled_omegaOMEGA_MAX/NMAX;
for(int i=1;iNMAX;i+)
{
omega_¥d_omegdi;
d_flld]+=powf(omega_i,2)/powf(2*A,3))*expfomega_fomega k(4*A))*jnf(2,o0mega_i*r)omega_fcos(omega_ft);
}
d_flld]*=d_omegdcosthetg
}

__global__ voidomputeFielddouble *d_f, double dt) {
int totalNx=gridDim.>> 1;
int totalNy=gridDim.y>> 1,

int Id =//fill in computation of linear ID based on block indices

double t=//fill in time computation based on thread Id;

int xi=(int)plockldx.x (gridDim.x>> 1));
int yi=(int)(lockldx.y (gridDim.y>> 1));
double x=(double)xibtaINx*XMAX;
double y=(doublg)i/ totalNy*Y MAX;

double r=sgrt(xx+y*y);

doublecostheta= (r>1.0€10)? 2powf(x/r,2)-1: O;
d_f{d]=0;

/ffill in kernel call to evaluate field value

51

Compile and run a CUDA program on CRC

GENCODE

A100: arch=compute_80,code=sm_80
V100:arch=compute_70,code=sm_70 :
GTX1080arch=compute_61,code=sm 61 After loadinggcg

TitanX arch=compute_52,code=sm_52 |oad CUDA module
Nvidia CUDA

Binary Source code

compiler j
\ \Qodule load cuda/ll.(//

nvcc 1 gencode $GENCODE o <OUTPUT> <SOURCE.cu>
Crc - interactive.py - g (optona: -p<GPuPart>) |t <T> #interactive
J/<OUTPUT> <INPUT PARAMETERS>

|

Execute compiled binary on GPU node

Run and view animation

X, y Resolution Total time

|/

A./simulatePulse256 256 3.0

AOn VIZ node:
Anodule load python/3.7.0
Aoython animate2D.py

Summary/Recap

AGPUs offer a massive amount of processing power capacity
ACUDA is the programming language used to progisdiaGPUs
AEfficient mapping of problem to GPUs key to performance
AUnderstandingnemory allocation helps improve performance

Outlook/Advanced Topics

ACommunication and synchronization between threads/blocks (data
exchange, reduction)

AMulti-streaming

AUse of external CUDA libraries

AMultiple GPUs/CPUs: CUDA/MPI/OpenMP

AGPU peer to peer communicatioBPUDirect RDMA

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#abstract

Credits

AOak Ridge National Laboratory tutorials
ANvidia Documentation

AGPU courses at universities
A Caltech
AUWisconsin
AUChicago

Thank You for Your Attention !
Questions?

