
GPU
Programming
with CUDA

Cheng(chx33@pitt.edu), Kim, Leonardo, Fangping, Daniel, Nick

Center for Research Computing

University of Pittsburgh

1

Table of Contents

ÅPart 1: Introduction to C/C++ programming

ÅPart 2: GPU hardware & architecture

ÅPart 3: Introduction to CUDA-C/C++

ÅPart 4: Practical Examples

2

Workshop Content

Åctest.cpp: An example C++ program

ÅcudaHello.cu: A first CUDA program

Åctest.cu: GPU equivalent of ctest.cpp

Åccompute.cu: CUDA program for 2D computation

ÅAll the above files with "_full" extension: Complete source files ready
to be compiled

Åanimate2D.py: Python script that generates animation from output
files of ccompute.cu

ÅCUDA_workshop.pptx:Presentation slides!

3

Download workshop material

on cluster:

cp - r / ihome /workshops/ GPU_CUDA_shared $HOME/

4

Part 1: Introduction to C/C++ Programming

5

Programming in C/C++: Intro

ÅElementary data types and storage sizes: bool (1 Byte), char(1 Byte),
int (4 Bytes), float (4 Bytes), double (8 Bytes); 1 Byte = 8 Bits [0...255]
ÅModifiers: signed, unsigned, long, short
ÅGeneric: void
ÅExample: long long unsigned int(0 to 18,446,744,073,709,551,615)
ÅDetermine storage size in bytes: sizeof(...)
ÅAllocate storage: malloc(…)

ÅPointers: Stores address of variable, not data (int * i, double* x)

ÅDerived data types: struct, class

ÅConditionals: if(condition==True){carry out a; } else { carry out b;}

ÅComments: //Comment, or /*multi line comment block*/

6

Programming in C/C++: Intro
Å Operators:
ÅUnary: Increment/Decrement(++, --), Negation(!),Address, dereference(&,*)

ÅBitwise: And(&), Or(|), Left/right shift (<<, >>)

ÅLogical: And (&&), Or (||), Equals (==)

ÅArithmetic: +, -, *, /, %(modulo)

ÅTernary: x = (Condition)? a: b equivalent to if(Condition) x=a; else x=b;

ÅMay be re-defined for derived data structures

Å Loops:
Åfor(i=0; i<N;i++) {instructions;}

Åwhile(condition==true){instructions;}, do{instructions} while(condition)

ÅExit loop: break

ÅScope: Variable declared within a loop not visible outside a loop!
7

Paradigms in C/C++

ÅProcedural programming:Organize large program into smaller parts,
i.e. subroutines/modules/functions
ÅDeclaration: Specify data types of all inputs and output for

function/subroutine, Examples:int myFunction(int, double), void mySub()
ÅDefinition: Body of instructions for function/subroutine, return value must

match declaration, Example:int myFunction(int a,double b) {double result;
instructions; return result;}
ÅInvoke function: type of input arguments must match declaration! Example:

int a; doubleb; doublec = myFunction(a,b);
ÅScope: Variables only visible within the function in which they are declared!

ÅObject-oriented programming:Abstraction and encapsulation
ÅGroup data and functions into a class
ÅControl access of internals from outside: public, private

8

Typical C/C++ Program

Å#includeheader files containing declarations of functions, constants,
and datatypes, read by pre-processor

ÅStarts with main function, may or may not return value upon exit;

ÅVariables must be declared before they can be used!

ÅProgramwritten in plain text file ending with *.c or *.cpp,
IDEs(Eclipse, Code::Blocks, Visual Studio, ...) can be helpful tools

ÅSpacing symbols (space, new line, tab) don't matter

ÅProgram must be built before execution

ÅOptional: Invoke routines contained in librariesand link them to own
program, must be declared within program!

9

Example(ctest.cpp): Prime factorization (main)

10

#include<iostream>
#include<stdlib.h>
#include<chrono>
usingnamespacestd;
usingnamespacestd::chrono;
longlongunsignedint chkprime_cpu(long longunsigned int);

int main(int argc, char*argv[]) {
char*eptr;
longlongunsignedfactor; //main variable declarations
unsignedlonglongNstart= strtoull(argv[1],&eptr, 10); //read number from terminal

auto start = high_resolution_clock::now(); //start clock
factor=chkprime_cpu(Nstart); // check for prime factors

if(!factor) cout<<Nstart<<" is prime!"<<endl;
elsecout<<Nstart<<" has prime factor "<<factor<<endl; //output prime factor
auto stop= high_resolution_clock::now();
auto duration= duration_cast<microseconds>(stop- start);
cout <<"Time in microseconds: "<<duration.count() <<endl; //output elapsed time
return 0;

}

Example: Prime factorization (Function)

11

long longunsigned chkprime_cpu(long longunsigned int Number)
{

unsigned long range = (unsigned long) sqrt(Number);

for (long longunsignedi; ;i++) //Fill in the loop to search for prime factor, exit when found!
{

}

return 0;
}

Generate binary <OUTPUT> with C++ compiler:
module load gcc/8.2.0

g++ -o <OUTPUT> <SOURCE.cpp>

Execute binary: ./<OUTPUT> <INPUT PARAMETERS>
Full compilable source file: ctest_full.cpp

Part 2: GPU Hardware & Architecture

12

Why GPU Programming?

ÅGPUs pushed the "power wall" hit by multi-core CPUs

ÅMassively parallel architectures developed as a response to high
demand from gaming industry

ÅGPU's have many small processors: High latency, high parallelism

Åif
Å(1) program is computationally intensive (not spending much time

transferring data) and

Å(2) massively parallel, so computations can be independent.

consider using the GPU!

13

Overview

ÅGPGPU (or simply GPU) is a device specialized for compute intensive,
highly-parallel computations

ÅProgrammable using general purpose programming with extensions--
special libraries and instruction set
Åe.g. Nvidia CUDA--an extension of C/C++ (Also available for Fortran)

ÅCUDA stands for Compute Unified Device Architecture

ÅWe will discuss GPU hardware architecture, CUDA programming model,
CUDA runtime environment and some examples

14

Why understand hardware?

ÅParallel programming is fundamentally linked to the underlying
hardware architecture

ÅUnderstanding of the underlying hardware enables a programmer to
align their code well to the hardware

ÅSignificant performance gainscould be obtained by correctly
mapping the CUDA code to GPU architecture

ÅSignificant performance lossesby mismatching CUDA code to GPU
architecture

15

CPU and GPU assembly

ÅGPUs cannot work independently in a computer!

Åa CPU is needed to "host" the GPU

ÅCPU sends instructions and data to GPU and receives results

ÅGPU is usually mounted on the PCI-e slot
ÅPCI-e is peripheral component interconnect express

Åif you own a PC, you can buy a GPU and plug it in and you are all set
to do GPU programming!

16

GPU Components

ÅOutermost assembly consists of the circuit board and cooling system

ÅCircuit board consists of:
ÅGPU "chip"
Åmemory

ÅGPU "chip" is organized as a collection of Streaming multiprocessors
(SM)

ÅEach SM is a collection of Streaming Processors (SP)

ÅOne SP is a GPU "core"

ÅMemory is organized as per thread local memory, per block shared
memory, all blocks access global memory

17

Additional Components

ÅGigathreadglobal scheduler: distributes thread blocks to Streaming
Multiprocessors

ÅWarp scheduler: local thread scheduler at the SM level, 32 threads
bundled together

ÅFMA: Fused Multiplication Addition unit that could do (A*B+C) in one
step

18

CPU vs. GPU

Graphics Processing UnitsCentral Processing Units

Block Diagram of a GPU (Fermi Architect.)

20

How do we write program for the GPU?

CUDA from NVIDIA

Source: NVIDIA CUDA Programming Guide

Latest GPU resources at CRC

"Standard" A100 ("Ampere") partitions on GPU cluster

Å2 sockets per node, 64 CPU cores/socket

Å1 TBRAM/node

Å4 NVIDIA A100GPUs/socket

Å40 GB memory per GPU

ÅMax of 16 CPUs per GPU

3 X86_64 nodes with 8 NVIDIA A100 40GB GPUs/node NVLink

2 X86_64 nodes with 8 NVIDIA A100 80GB GPUs/node NVLink

Older nodes

ÅNvidia GeForce gtx1080
ÅEach node has 4 GPUs
ÅEach GPU has 2560 CUDA cores

ÅMore at:https://crc.pitt.edu/resources/

23

Part 3: Introduction to CUDA-C/C++

24

50K feet overview of CUDA programming

25

26

ÅCUDA program consists of code to be run on the host, i.e. the CPU, and
code to run on the device, i.e. the GPU

ÅFunction that is called by the host to execute on the deviceis called a
kernel

ÅRunning instance of a kernel is thread

ÅThreads in an application are grouped in blocks

ÅEntirety of the blocks is called the grid of that application

20K feet overview of CUDA programming

What is grid-block-thread business?

ÅOrganization of threadsfor execution over GPU cores

ÅA thread is a minimal unit of execution

ÅKernel becomes thread at runtime

ÅA group of threads is a block

ÅA collection of blocks is a grid

ÅBasic idea: Hide GPU latency with massive data parallelism!

ÅOne grid is scheduled and launched per kernel
Åprogrammer must provide the shape and size of the gridwhen invoking a

CUDA kernel!

27

A 2-D grid-block-thread diagram

28

Two representations

29

Goal: Map program to GPU hardware

30

CUDA Jargon
ÅTypeFunctions
Å__global__: a CUDA kernel callable by host

Å__device__: a CUDA kernel callable by device

Å__host__: a regular function that runs on host

ÅKernel invocation from host: kernel<<<blocks, threads>>>(args)
Ådim3 gridDim: how many blocks in grid in terms of "X times Y times Z"
Ådim3 blockDim: how many threads in a block in terms of "X times Y times Z"
Ådim3 blockIdx: location of a block in grid in terms of (x, y, z)
Ådim3 threadIdx: location of a thread in a block in terms of (x, y, z)

ÅDepending upon the problem, 1-, 2-, or 3- dimensions of the elements may
be used
ÅSynchronization after kernel call = waiting on host for kernel to finish:

cudaDeviceSynchronize()

31

Example(cudaHello.cu): Say Hello in CUDA

32

#include <stdlib.h>
#include <cuda.h>
#include <stdio.h>

__global__ void kernelHello() {
printf("Saying 'Hello' from block %i, thread %i \n"); //fill in the thread and block Id
}

int main(int argc, char *argv[])
{

//read number of blocks and threads from terminal
int nblocks= atoi(argv[1]);
int nthreads= atoi(argv[2]);
//fill in kernel call

cudaDeviceSynchronize();

return 0;
}

Fullcompilablesource file: cudaHello_full.cu

Compile and run a CUDA program on CRC

33

module load cuda /11.0

nvcc ïgencode $GENCODE- o <OUTPUT> <SOURCE.cu>

crc - interactive.py - g (Optional: - p < GPUPart >) ït <T> #interactive

./<OUTPUT> <INPUT PARAMETERS>

Nvidia CUDA
compiler

After loading gcc,
load CUDA module

Execute compiled binary on GPU node

Binary Source code

GENCODE
A100: arch=compute_80,code=sm_80
V100:arch=compute_70,code=sm_70

GTX1080:arch=compute_61,code=sm_61
TitanX: arch=compute_52,code=sm_52

Grid-block-thread arithmetic

Åthere are 4 blocks in a grid and 16 threads in a block. How many
threads in the grid?
Å16 * 4 = 64

ÅAssuming there are 2048 thread and the block size is 512, how many
blocks will be in the grid?
Å(ceil)2048/512=4

Ågiven a one dimensionalgrid of size 2 blocks and block size 32
threads, how will you find location of nth thread in terms of blockidx,
blockdimand threadidx?
Ånth thread = threadIdx.x+ blockDim.x*blockIdx

34

8 parts of a CUDA program

1. Setup inputs on the host (CPU-accessible memory)

2. Allocate memory for inputs on the GPU

3. Copy inputs from host to GPU

4. Allocate memory for outputs on the host

5. Allocate memory for outputs on the GPU

6. Start GPU kernel

7. Copy output from GPU to host

8. Free up all memory upon completion

35

Newer CUDA versions:Unified memory, only need to be declared and allocated once for
GPU and CPU (Steps 2-4)!

Let's see the 8 parts for a common example:
vector add

36

1: Initialize inputs on host

double* h_a ;
double* h_b ;
double* h_c ;

int N=256;

h_a = (double*)malloc(N* sizeof (double));
h_b = (double*)malloc(N* sizeof (double));
h_c = (double*)malloc(N* sizeof (double));

for (int i = 0; i < N; i++) {
h_a[i] = <VALUE_a>;
h_b[i] = <VALUE_b>;

}

37

2: Allocate memory for inputs on GPU

double* d_a ;

double* d_b ;

cudaMalloc (& d_a , N* sizeof (double));

cudaMalloc (& d_b , N* sizeof (double));

38

3: Copy inputs from host to GPU

cudaMemcpy(d_a , h_a , N* sizeof (double),

cudaMemcpyHostToDevice);

cudaMemcpy(d_b , h_b , N* sizeof (double),

cudaMemcpyHostToDevice);

39

4: Allocate memory for outputs on host

h_c = (double*) malloc (N* sizeof (double));

40

5: Allocate memory for outputs on GPU

double* d_c ;

cudaMalloc (& d_c , N* sizeof (double));

41

6: Launch GPU kernel

//use 1 - dimension for both grid and block sizes

int blockSize = 256;

int gridSize = (int) ceil((float) N/ blockSize);

// Execute the kernel

add<<< gridSize, blockSize >>> (d_a , d_b , d_c , N);

42

7: Copy output from GPU to host
8: Free memory

cudaMemcpy(h_c , d_c , N* sizeof (double),

cudaMemcpyDeviceToHost);

cudaFree (d_c);

free(h_c);

43

The "add" kernel

//CUDA kernel. each thread takes care of one

element of c

__global__ void add(double *a, double *b,

double *c, int n)

{

//get our global thread ID

int id= threadIdx.x + blockIdx.x * blockDim.x ;

//make sure we do not go out of bounds

if (id < n) c[id] = a[id] + b[id];

}

44

Example(ctest.cu): Prime factor with CUDA

45

int main(int argc, char *argv[])
{

char *eptr;
unsigned long long Number = strtoull(argv[1],&eptr, 10);
int nthreads=atoi(argv[2]);
int nblocks=atoi(argv[3]);//read number of blocks and threads from terminal

long longunsigned *d_ip;
long longunsigned* ip = (long longunsigned*)malloc(sizeof(long longunsigned));
* ip=0;
cudaMalloc((void**)&d_ip, sizeof(long longunsigned));
cudaMemcpy(d_ip, ip, sizeof(long longunsigned), cudaMemcpyHostToDevice);
auto start = high_resolution_clock::now();

//fill in kernel call to check primes

cudaMemcpy(ip, d_ip, sizeof(int), cudaMemcpyDeviceToHost);
if(!* ip) cout<<Number<<" is prime! "<<endl;
else cout<<Number<<" has prime factor "<<*ip<<endl;

auto stop = high_resolution_clock::now();
auto duration = duration_cast<microseconds>(stop - start);

cout<<"Time in microseconds: "<< duration.count() << endl;
cudaFree(d_ip);
free(ip);
return 0;

}

Kernel: Prime factor with CUDA

46

__global__ void isprime_device(long longunsigned *d_ip, long longunsigned Number, long longunsigned sq_n) {

//Fill in the values for start and end indices, depending on block and thread Id
long unsigned avgSize= ;
long unsigned start_index= ;

long longunsigned istart = ;
long longunsigned iend= ;

long longunsignedi=istart;
do //Fill in loop to check for prime factor
{
if();
i++;

}while(&& (i<iend));

}

Fullcompilablesource file: ctest_full.cu

Test GPU and CPU prime factorization

Å./chkprime_gpu1286284145982677551 256 256

Å./chkprime_cpu1286284145982677551

ÅExperiment with different block and thread numbers

ÅTry a smaller number or a composite number with small factor

ÅGenerate large primes online: https://bigprimes.org/

ÅSimilar idea: Search for Hash keys, Crypto-mining
47

Number to be factorized Number of blocks Number of threads

https://bigprimes.org/

Example: Animation of 2D acoustic pulse

48

Acoustics are describedby linearized Euler equations!

PDE for potential ɸin 2D cylindrical coordinates (r, θ):

Initial conditions for pressure pulse with width 1/a:

Exact solution for ɸ:

Exact solution for p:

Å Create animation with CUDA: Divide 2D domain into 2D grid of blocks, each block containing one single point in
domain, dim3 grid(nxblocks, nyblocks)

Å Divide each block into threads, each thread assigned a specific time

Å Calculate values for all (r,θ, t) in parallel: computeField<<<grid, nthreads>>>

Bessel function of order 2

Example(ccompute.cu): Simulating acoustics

49

int main(int argc, char *argv[])
{

char *eptr;
unsigned long long Number = strtoull(argv[1],&eptr, 10);

int nxblocks=atoi(argv[1]);
int nyblocks=atoi(argv[2]);
int nthreads=64;
double t = atof(argv[3]);
double dt=t/(nthreads-1);
int ntotal=nxblocks*nyblocks;

dim3 grid(nxblocks,nyblocks); //generate 2D grid of blocks

double *d_f;
double* f = (double*)malloc(sizeof(double)*ntotal*nthreads);

cudaMalloc((void**)&d_f, sizeof(double)*ntotal*nthreads);
cudaMemcpy(d_f, f, sizeof(double)*ntotal*nthreads, cudaMemcpyHostToDevice);

//Fill in kernel call to calculate field values

cudaMemcpy(f, d_f, sizeof(double) * ntotal*nthreads, cudaMemcpyDeviceToHost);
writeOutput(f,nxblocks,nyblocks,nthreads);//write output files
cudaFree(d_f);
free(f);
return 0;

}

Digression: Multidimensional representation
of grid and block

in the previous slides, we used:

int blockSize = 256;

int gridSize = (int) ceil((float) N/ blockSize);

this is OK since we are want to arrange threads in a 1-dimensional setup.

we could have written the above two lines as follows without any problems:

dim3 blockSize (256, 1, 1);

dim3 gridSize ((int) ceil((float) N/blocksize.x,1,1);

vecAdd <<<gridSize , blockSize >>> (d_a , d_b , d_c , N);

50

Example(ccompute.cu): Simulating acoustics

51

__device__ void eval(double *d_f, int Id, double r, double costheta,doublet)
{

double omega_i;
double d_omega=OMEGA_MAX/NMAX;
for(int i=1;i<NMAX;i++)
{

omega_i=d_omega* i;
d_f[Id]+=powf(omega_i,2)/(powf(2*A,3))*exp(-omega_i*omega_i/(4*A))* jnf(2,omega_i*r)*omega_i*cos(omega_i*t);

}
d_f[Id]*=d_omega*costheta;

}

__global__ void computeField(double *d_f, double dt) {
int totalNx=gridDim.x>> 1;
int totalNy=gridDim.y>> 1;

int Id =//fill in computation of linear ID based on block indices

double t= //fill in time computation based on thread Id;

int xi=(int)(blockIdx.x- (gridDim.x>> 1));
int yi=(int)(blockIdx.y- (gridDim.y>> 1));
double x=(double)xi/totalNx*XMAX;
double y=(double)yi/ totalNy*YMAX;

double r=sqrt(x*x+y*y);
double costheta= (r>1.0e-10)? 2*powf(x/r,2)-1: 0;
d_f[Id]=0;
//fill in kernel call to evaluate field value

}

Fullcompilablesource file: ccompute_full.cu

Compile and run a CUDA program on CRC

52

module load cuda /11.0

nvcc ïgencode $GENCODE- o <OUTPUT> <SOURCE.cu>

crc - interactive.py - g (Optional: - p < GPUPart >) ït <T> #interactive

./<OUTPUT> <INPUT PARAMETERS>

Nvidia CUDA
compiler

After loading gcc,
load CUDA module

Execute compiled binary on GPU node

Binary Source code

GENCODE
A100: arch=compute_80,code=sm_80
V100:arch=compute_70,code=sm_70

GTX1080:arch=compute_61,code=sm_61
TitanX: arch=compute_52,code=sm_52

Run and view animation

Å./simulatePulse256 256 3.0

ÅOn VIZ node:
Åmodule load python/3.7.0

Åpython animate2D.py

53

x, y Resolution Total time

Summary/Recap

ÅGPUs offer a massive amount of processing power capacity

ÅCUDA is the programming language used to program NvidiaGPUs

ÅEfficient mapping of problem to GPUs key to performance

ÅUnderstandingmemory allocation helps improve performance

54

Outlook/Advanced Topics

ÅCommunication and synchronization between threads/blocks (data
exchange, reduction)

ÅMulti-streaming

ÅUse of external CUDA libraries

ÅMultiple GPUs/CPUs: CUDA/MPI/OpenMP

ÅGPU peer to peer communication:GPUDirect RDMA

55

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#abstract

Credits

ÅOak Ridge National Laboratory tutorials

ÅNvidia Documentation

ÅGPU courses at universities
ÅCaltech

ÅUWisconsin

ÅUChicago

56

Thank You for Your Attention !
Questions?

57

