
Lecture 3 – Introduction to Natural

 Language Processing

Instructors: Yufei Huang, PhD; Arun Das, PhD

Grasping Deep Learning from Fundamentals

to Applications

June 15, 2023

Evolution of Natural Language Processing

(NLP)

NLP

Natural Language Generation

Natural
Language Text

Natural Language Understanding

(Linguistics)

Phonology Pragmatics Morphology Syntax Semantics

https://medium.com/nlplanet/a-brief-timeline-of-nlp-bc45b640f07d

Heavy Investments!

State-of-the-Art in Question Answering
e

x
a
c
t
m

a
tc

h
 (
E

M
)

https://ai.googleblog.com/2022/04/pathw ays-language-model-palm-scaling-to.html

𝒘 ෤𝑦𝑥

Units=1

ℎ

Back
Propagation

Input = 0

Prediction, ෤𝑦 = 12.1
Label, y = 32

One Artificial Neuron

*good for learning temporal associations

in the input or input sequences

Recurrent Neural Network (RNN)

Long Short-Term Memory (LSTM)
• Adds cell state to the RNN.

• Adds four gates to control the flow of information.
• Carries computation sequentially in three steps.

ml-lectures.org

Input Gate Output Gate

Forget Gate

Long Short-Term Memory (LSTM)
• Forget Step:

• Input and Update Step:

• Output Step:

ml-lectures.org

Input Gate Output Gate

Forget Gate

* Decide what and how
much to add to the cell
state.

* Forgets specific
information of the cell
state.

* Decide how much of
the information stored
in the cell state should
be written to the new
hidden state.

Text Data Processing

Textual data is usually preprocessed using the following 5 tasks:

1. Standardize each example (usually lowercasing + punctuation
stripping)

2. Split each example into substrings (usually words)

3. Recombine substrings into tokens (usually ngrams)

4. Index tokens (associate a unique int value with each token)

5. Transform each example using this index into a vector of ints or a
dense float vector.

•Standardization refers to preprocessing the text, typically to remove
punctuation or HTML elements to simplify the dataset.
•Tokenization refers to splitting strings into tokens (for example, splitting a
sentence into individual words by splitting on whitespace).
•Vectorization refers to converting tokens into numbers so they can be fed into a
neural network.

Original Sentence:
Yes it was a little low budget, but this movie shows love!

Standardization:

yes it was a little low budget but this movie shows love

Tokenization:

[yes, it, was, a, little, low, budget, but, this, movie, shows, love]

Vectorization:

[414 9 10 192 20 25 200 200 250 300 0 0 0 0 …]

Subword Tokenizers

Original Sentence:

but they did n't test for curiosity .

Tokenization:

[b'[START]', b'but', b'they', b'did', b'n', b"'", b't', b'test', b'for', b'curiosity', b'.', b'[END]’]

Vectorization:
[2, 87, 83, 149, 50, 9, 56, 664, 85, 2512, 15, 3]

* Skipped standardization step in this example.

Typical DL Pipeline

Load and

Preprocess

Data

Data

Visualization

Design the

Deep Learning

Model

Train the

Model

Define

Evaluate the

Model

Step 1 Step 2 Step 3 Step 4 Step 5

You can try this service from here: Semantic

Analysis

Deep Learning Training Process

- Weights are randomly initialized at the beginning.
- We know the actual labels (supervised).

1. Input data -> Batch of data.

2. We find the predictions.
3. We pass the predictions to the optimizer (the

optimizer already knows the actual labels.)

4. We find the loss between predicted labels and
actual labels.

5. We tune the “learnable” parameters according to
the loss.

6. Go back to step 1.

https://monkeylearn.com/sentiment-analysis-online/
https://monkeylearn.com/sentiment-analysis-online/

Yes it was a little low budget, but this movie shows love! 1

Input sentence label

Text Encoder

Vocabulary (** 1000 words) – VOCAB SIZE

[414 9 10 192 20 25 200 200 250 300 0 0 0 0 …]

Vocabulary

Encoded sentence

* UNK token for unknown words that didn’t fit in the set vocabulary size.

* Multiple words represented by same vector encoding.

Bidirectional LSTM

Input Gate Output Gate

Forget Gate

64

0/1

1 2 3 4 5

1 2 3 4 5

“Learnable” Parameter

Learnable Parameter

Learnable Parameter

Learnable Parameter

or “trainable”

64

0/1

1x64 [………..] [………..] [………..] [………..]

1 2 3 4 5

1 2 3 4 5
Optimizer - Adam

LOSS Fn

Cross

Entropy
Output Labels

Minimize

Tune all trainable parameters

GOAL

0 – 90% -> loss is high -> tune parameters

1 – 50% -> tune parameters again
1 – 90% -> ok, stop.

Prediction

1

• Complex!

• May not have an exact match for phrases or words.
• Grammar/humor/context + cultural differences.

Transformers

 Transformers are parallelizable.

 Transformers can capture distant or
long-range contexts and
dependencies.

 Transformers make no assumptions
about the temporal/spatial
relationships across the data.

Portuguese

mas eles não tinham a curiosidade de me testar .

English
but they did n't test for curiosity .
[2, 87, 83, 149, 50, 9, 56, 664, 85, 2512, 15, 3]

[b'[START]', b'but', b'they', b'did', b'n', b"'", b't', b'test', b'for', b'curiosity', b'.', b'[END]’]

> Subwords: the word 'searchability' is decomposed into 'search' and '##ability', and the
word 'serendipity' into 's', '##ere', '##nd', '##ip'and '##ity'.

Encoder Decoder

Inputs

Labels

Global Self-Attention

C
ro

s
s

 A
tt

e
n

ti
o

n

Causal Self-Attention

* Generates the text one token at a

time and feeds the output back to the
input – Autoregressive model.

* Makes sure output for

each sequence element
depends on the previous
sequence elements.

* Lets the decoder
access the information
extracted by the encoder.

* It computes a vector
from the entire context
sequence, and adds that
to the decoder's output.

* Responsible for
processing the context
sequence, and propagating
information along its
length.

* Inputs and Labels

are shifted by 1.

* A stack of sines and cosines that vibrate at
different frequencies depending on their
location along the depth of the embedding
vector.

* The attention layers see their input as a set
of vectors, with no order.

* So, we add a positional encoding to the
embeddings to force near-by elements to have
similar positional encodings.

Positional Encoding

1-layer Transformer

4-layer Transformer

RNN+Attention

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a
Transformer trained on English-to-French translation (one of eight attention heads).
Source: Google AI Blog.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Code

Step 1: Load and Preprocess Data

Step 2: Visualize the dataset

1000 VOCAB SIZE

Word Count or Bag of Words

Step 3: Design the NLP Model

The output of the Bidirectional LSTM is passed to a
Dense layer with 64 nodes, and then further passed to
the output layer for final binary classification.

2nd word is processed based on the embedding at 2nd
location in the sentence as well as the output of the first
word.

3rd word is processed based on the embedding at the 3rd
loc in the sentence as well as the output of the second
word.

Word2Vec – Package by Google to create Embeddings.

Long Short-Term Memory (LSTM) Module

Bidirectional LSTM

Step 4: Train the NLP Model

Once we have defined the model, now we can compile the model with the loss and

optimizer functions just like we did for the DNN and CNN examples last week. We can

then fit the model on the train dataset to train the embedding layer, RNN, and dense

layers. Note that the RNN layer has multiple layers inside which enables the temporal or

sequential nature of learning. The overall parameters of the model is thus dependent on

the embedding size, number and size of RNN layers, and the number and size of dense

layers.

Step 5: Evaluate the Trained Model

We can run evaluate method on the model to find the test loss and accuracy.

Now, given a new input, we can understand if a movie review is positive or negative.

We can now experiment by adding multiple RNN layers to the network and trying out

different types of RNN layers.

	Slide 1: Lecture 3 – Introduction to Natural Language Processing
	Slide 2: Evolution of Natural Language Processing (NLP)
	Slide 3
	Slide 4: Heavy Investments!
	Slide 5
	Slide 6: State-of-the-Art in Question Answering
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Long Short-Term Memory (LSTM)
	Slide 11: Long Short-Term Memory (LSTM)
	Slide 12: Text Data Processing
	Slide 13
	Slide 14: Subword Tokenizers
	Slide 15: Typical DL Pipeline
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Transformers
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Code
	Slide 30: Step 1: Load and Preprocess Data
	Slide 31: Step 2: Visualize the dataset
	Slide 32: Step 3: Design the NLP Model
	Slide 33
	Slide 34: Step 4: Train the NLP Model
	Slide 35: Step 5: Evaluate the Trained Model

