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Evolution of Natural Language Processing
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A Brief Timeline of NLP

1950 1960

e Interest in Translation o ELIZA e Case Grammars, « Ontologies
s "Syntactic Structures" « ALPAC Report and Semantic Networks, e Expert Systems

by Chomsky First Al Winter and Conceptual (e.g. MYCIN)
e Generative Grammars Dependency Theory

e Statistical Models e Language Modelling Word2Vec e GPT3 and Large
e RNNs and LSTMs * Word Embeddings Rise of LSTMs and CNNs Language Models
e Google Translate Encoder-Decoder
Attention and
Transformers
e Pre-trained Models and
Transfer Learning
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Heavy Investments!
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What is the fee for
international money transfer?

Fintech Chatbotfor | & @
Company A Company A \.‘.Mll.n
"égp There is no extra fee for
international transfers.
Chatbot SaasS
Product
What is the fee for
@‘F’ international money transter?
Fintech Chatbot for ¢
Company B Company B w

We charge a 55 flat fee for
interpational transfers,
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State-of-the-Art in Question Answering

100
90 PaLM 2-L (one-shot)
PaLM-540B (Few=Shot)
= 80 GLaM 62B/64EAOne-shot)
I\.I_J/ GPT-3 175B (Few-Shot)
S 70 S—Norm  MemoReader
g
— 60
o
> Reading Twice for NLU
50 Mh‘emonic Reader
¢
40
30

2018 2019 2020 2021 2022 2023

Other models - Models with highest EM

h University of
w Pittsburgh



ARITHMETIC

LANGUAGE UNDERSTANDING

8 billion parameters
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A Brief Timeline of NLP

1950 1960

e ELIZA
* ALPAC Report and
First Al Winter

« Interest in Translation

* "Syntactic Structures"
by Chomsky

* Generative Grammars

——» 1990 -

* Language Modelling
* Word Embeddings
e Google Translate

* Statistical Models
* RNNs and LSTMs
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« Ontologies
e Expert Systems
(e.g. MYCIN)

e Case Grammars,
Semantic Networks,
and Conceptual
Dependency Theory

e GPT3 and Large
Language Models

* Word2Vec

¢ Rise of LSTMs and CNNs

¢ Encoder-Decoder

« Attention and
Transformers

¢ Pre-trained Models and
Transfer Learning

Recurrent Neural Network (RNN)

output units time 1 time 2 time 3
output units output units output units.
L) f J [\
hidden units time 1 - time 2 - time 3
hidden units | hidden units " hidden units
L 1 / \ [}
input units time 1 time 2 time 3
input units input units input units

*good for learning temporal associations
in the input or input sequences
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Long Short-Term Memory (LSTM)

* Addscell state to the RNN.
* Addsfour gatesto control the flow of information.
« Carries computation sequentially in three steps.

Ut Yt

LT Ly
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Long Short-Term Memory (LSTM)
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Text Data Processing

Standardization refers to preprocessing the text, typically to remove

punctuation or HTML elements to simplify the dataset.

Tokenization refers to splitting strings into tokens (for example, splitting a
sentence into individual words by splitting on whitespace).

*Vectorization refers to converting tokens into numbers so they can be fed into a
neural network.

Textual data is usually preprocessed using the following 5 tasks:

1.

aoR W N

Standardize each example (usually lowercasing + punctuation
stripping)

Split each example into substrings (usually words)

Recombine substrings into tokens (usually ngrams)

Index tokens (associate a unique int value with each token)

Transform each example using this index into a vector of ints or a
dense float vector.
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Original Sentence:
Yes it was a little low budget, but this movie shows love!

Standardization:
yes it was a little low budget but this movie shows love

Tokenization:
[yes, it, was, a, little, low, budget, but, this, movie, shows, love]

Vectorization:
[414 9 10 192 20 25 200 200 250 300 0 00 0 ..]

S University of
Pittsburgh



Subword Tokenizers

Original Sentence:
but they did n't test for curiosity .

Tokenization:
[b'[START], b'but', b'they', b'did’, b'n’, b™", b't', b'test’, b'for', b'curiosity', b'.", b'[ENDT]]

Vectorization:
[2,87,83,149,50,9, 56,664,85,2512,15, 3]

* Skipped standardization step in this example.
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Typical DL Pipeline

Step 1 Step 2 Step 3 Step 4 Step 5
Load and Design the Train the
Data ) Evaluate the
Preprocess Visualization » Deep Learning Model Model
Data Model Define
Deep Learning Training Process
. ot - - Weights are randomly initialized at the beginning.
eot Wi yorown tex esue - Weknow the actual labels (supervised).
o 1. Inputdata -> Batch of data.
1 2. Wefind the predictions.
3. We pass the predictions to the optimizer (the
optimizer already knows the actual labels.)
4. Wefind the loss between predicted labels and
You can try this service from here: actual labels.
5. Wetune the “learnable” parameters according to

the loss.
6. Go backto step 1.
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https://monkeylearn.com/sentiment-analysis-online/
https://monkeylearn.com/sentiment-analysis-online/

Input sentence label

Yes it was a little low budget, but this movie shows love! 1

Vocabulary (** 1000 words ) — VOCAB SIZE

[414 9 10 192 20 25 200 200 250 300 0 00O ..]
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/ Vocabulary

array(['', '[UNK]', 'the', 'and', 'a', 'of', 'to', 'is', 'in', 'it', 'i‘',
'this', 'that', 'br', 'was', 'as', 'for', 'with', 'movie', 'but'],
dtype="'<U14")

Encoded sentence
array([[ 10, 540, 4, ..., 0, 0, 0], /

[ 10, 120, 11, ..., 0, 0, 0],
(414, 9, 14, ..., 0, 0, 0]1)

* UNK token for unknown words that didn't fit in the set vocabulary size.
* Multiple words represented by same vector encoding.
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That was a great movie Input

5 8 3 120 35 TextVectorization

El5] | E[B] | E[B] | E[120] | E[35] Embedding ‘ ” Parameter

)\ )\ )\ )\ )\ or “trainable”

i ' i i v Bidirectional Learnable Parameter
IEETE

64 Dense Learnable Parameter

0/1 Classification  L€arnable Parameter
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That was a great movie Input

5 8 3 120 35 TextVectorization

EIS] | EB] | EB] | E[120] | E[35] Embedding
1x64] [........ I O I || I

Bidirectional \
Tuneall trainable parameters

Optimizer - Adam

Prediction

0 - 90% -> loss s high -> tune parameters
1 - 50% -> tune parameters again
1-90% -> ok, stop.

64 Dense

0/1 Classification

LOSS Fn

Minimize
GOAL

» Cross
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English - detected Portuguese

Hi, my name is Ola, meu nome é
Arun Arun

Complex!
May not have an exact match for phrases or words.
Grammar/humor/context + cultural differences.
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Transformers

» Transformers are parallelizable.

» Transformers can capture distant or

long-range contexts and
dependencies.

» Transformers make no assumptions

about the temporal/spatial

relationships across the data.
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Encoding

Attention Is All You Need

Ashish Vaswani® Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research  Google Research
avaswaniGgoogle.com noamgoogle.com nikip@google.com uszOgoogle.com

Liion Jones® Aidan N. Gomez® ! Lukasz Kaiser*
Google Rescarch University of Toronto Google Brain
1lion@google.com  aidan@cs.toronto.edu  lukaszkaiser@google.com

Illia Polosukhin® *
i1lia.polosukhinOgmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,

based solely on attention mecha with and ¢
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more and requiring i

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BL On the WMT 2014 English-to-French translation task,
our model a new single del s f-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7) neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
transduction problems such as language modeling and machine translation [29, 2, 5]. Numerous
efforts have since continued to push the boundaries of recurrent language models and encoder-decoder
architectures [31,21,(13).

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with llia, designed and implemented the first Transformer models and
has been erucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

Work performed while at Google Brain.

+Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Portuguese
mas eles ndo tinham a curiosidade de me testar.

English

but they did n't test for curiosity .
[2, 87, 83, 149, 50, 9, 56, 664, 85, 2512, 15, 3]

[b'[START]', b'but', b'they', b'did', b'n', b"'", b't', b'test', b'for',

b'curiosity',

> Subwords: the word 'searchability’ is decomposed into 'search’ and '##ability', and the

word 'serendipity’ into's’, '##ere’, '##nd’, '##ip'and '##Hity'.
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* Generates the text one token at a Labels

time and feeds the output back to the
input — Autoregressive model. €| * Inputs and Labels
[} .
i c 3|2 are shifted by 1.
—| & o| B |H
A A A A A
e | | = I T 1 11
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': — N 2 access the information
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Positional Encoding
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Positional @_@ Positional
Encoding ¢ Encoding
Input Qutput
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* A stack of sines and cosines that vibrate at
different frequencies depending on their
location along the depth of the embedding
vector.

* The attention layers see their input as a set
of vectors, with no order.

*So, we add a positional encoding to the
embeddings to force near-by elements to have
similar positional encodings.



4-layer Transformer

1-layer Transformer
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The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a

Transformer trained on English-to-French translation (one of eight attention heads).
Source: Google Al Blog.
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https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Code
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Step 1: Load and Preprocess Data

VOCAB_SIZE = 1000
encoder = tf.keras.layers.TextVectorization(
max tokens=VOCAB_SIZE)
encoder.adapt(train dataset.map(lambda text, label: text))
vocab = np.array(encoder.get vocabulary())
vocab[:20]

array(['', '[UNK]', 'the', 'and', 'a', 'of', 'to', 'is', 'in', 'it', 'i‘',

'this', 'that', 'br', 'was', 'as', 'for', 'with', 'movie', 'but'],
dtype="'<U1l4")

encoded example = encoder(example)[:3].numpy()
encoded_example

array([[ 10, 540, 4, ..., 0, 0, 01,

[ 10, 120, 11, ..., O, 0, O],
(414, 9, 14, ..., 0, 0, 011)
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Step 2: Visualize the dataset

[33] 1 num words = 15

2 words_in the sentence = str(example[n].numpy()).split(' ')[:num words]
3 encodeded_id_of the words = encoded_example[n][:num words]
4
5 print("Encoding\tWord")
6 for word, encoded_id in zip(words_in the_ sentence, encodeded_id_of the words):
7 print(encoded id, "\t\t", word)

Encoding Word

10 b'I

86 first

1 encountered 1000 VOCAB SIZE

11 this

120 show Word Count or Bag of Words

51 when

10 I

14 was

1 staying

8 in

1 Japan

16 for

1 six

1 months

226 last
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Step 3: Design the NLP Model

That was a great movie Input
P
5 8 & 120 35 TextVectorization
I

El5] E[8] E[3] | E[20] | E[35] Embedding

i i i i i Bidirectional

Dense

Classification

3 Un. iversity of
Pittsburgh

model = tf.keras.Sequential([

encoder,
tf.keras.layers.Embedding(
input_dim=len(encoder.get_vocabulary()),
output_dim=64,
# Use masking to handle the variable sequence lengths
mask zero=True),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1l)

n

The output of the Bidirectional LSTMis passedto a
Dense layer with 64 nodes, and then further passed to
the output layer for final binary classification.

2"dword is processed based on the embedding at 2"
location in the sentence as well as the output of the first
word.

3 word is processed based onthe embedding atthe 3™
loc in the sentence as well as the output of the second

word.

Word2Vec — Package by Google to create Embeddings.



Long Short-Term Memory (LSTM) Module
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Step 4: Train the NLP Model

model.compile(loss=tf.keras.losses.BinaryCrossentropy(from logits=True),
optimizer=tf.keras.optimizers.Adam(le-4),
metrics=[ 'accuracy'])

Once we have defined the model, now we can compile the model with the loss and
optimizer functions just like we did for the DNN and CNN examples last week. We can
then fit the model on the train dataset to train the embedding layer, RNN, and dense
layers. Note that the RNN layer has multiple layers inside which enables the temporal or
sequential nature of learning. The overall parameters of the model is thus dependent on
the embedding size, number and size of RNN layers, and the number and size of dense
layers.

history = model.fit(train dataset, epochs=5)

S Un.iversity of
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Step 5: Evaluate the Trained Model

test loss, test acc = model.evaluate(test dataset)

print('Test Loss:', test loss)
print('Test Accuracy:', test acc)

We can run evaluate method on the model to find the test loss and accuracy.

Now, given a new input, we can understand if a movie review is positive or negative.

Question: This is a fantastic movie.

Predicted label: Positive

Question: This is a bad movie.

Predicted label: Negative

Question: This movie was so bad that it was good.
Predicted label: ©Negative

Question: I will never say yes to watching this movie.
Predicted label: Negative

Question: Skip this movie.

Predicted label: Negative

Question: Don't waste your time.

Predicted label: Negative

We can now experiment by adding multiple RNN layers to the network and trying out
different types of RNN layers.
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