Grasping Deep Learning from Fundamentals

to Applications

June 15, 2023

Lecture 3 — Introduction to Natural
Language Processing

Instructors: Yufei Huang, PhD; Arun Das, PhD

3% University of
Pittsburgh

Evolution of Natural Language Processing

X L . o
Language translation
Email Smart
filtering g assistant

e e
Sentiment <;]i§~
Analysis =
Y a'i7 \ @ Document
| g sl analysis
< - > e \
— Human =5 = Mocesso)
E 01 7 g—
Language = \
= N
Chatbots ® Online
searches
= 0
SAXON A E‘;X‘- = (‘.@)
NLP Social_ mgdia = Predictive
monitoring gT_@ text

Automatic summarization

Natural Language Understanding

Natural Language Generation (Wi e

| |
T 1 T]
Langjzcguergllext Phonology l Pragmatics \ l Morphology \ l Syntax \ l Semantics \

S University of
@ Pittsburgh

A Brief Timeline of NLP

1950 1960

e Interest in Translation o ELIZA e Case Grammars, « Ontologies
s "Syntactic Structures" « ALPAC Report and Semantic Networks, e Expert Systems

by Chomsky First Al Winter and Conceptual (e.g. MYCIN)
e Generative Grammars Dependency Theory

e Statistical Models e Language Modelling Word2Vec e GPT3 and Large
e RNNs and LSTMs * Word Embeddings Rise of LSTMs and CNNs Language Models
e Google Translate Encoder-Decoder
Attention and
Transformers
e Pre-trained Models and
Transfer Learning

University of
w Pittsburgh

Heavy Investments!

’ - Information . e
Entity Recognition . Spelling & Grammar Text Classification
Extraction
Translation Summarization Question Answering Emotion Detection
Annotators Models Languages
A v r A L B A
Split Text Clean Text 5000+ 200+
* Sentence Detector * Spell Checkln.g Pretrained Pipelines, Languages
* Deep Sentence Detector * Spell Correction Models & Trancforniars
* Tokenizer * Normalizer - E= = : :: =
* nGram Generator * Stopword Cleaner I BERT “ ELMO ” GloVe | - - . . == “
¢ Word Segmentation ¢ Summarization [ALBERT” XLNet H USE I = 0 l
m e ™I
| Small BERT || ELECTRA | — —
Understand Grammar Find in Text (75 |[NmT |[LaBSE | -1
* Stemmer * Text Matcher — - 2= -
¢ Lemmatizer ¢ Regex Matcher l DistilBERT ” RoBERTa I L =™ . ‘|_
* Part of Speech Tagger * Date Matcher l XLM-RoBERTa | =k ===1
* Dependency Parser e Chunker — —
* Translator * Question Answering l S-BERT](XLING I — l l) i
Trainable & Tunable Scalable to a Cluster Fast Inference Hardware Optimized Community
' -
,,,,,, £ iz) <A NLP
Spr K W intel nVIDIA SUMMIT
/ Microsoft
EFE Azure

University of
@ Pittsburgh

ChatGPT

What is the fee for
international money transfer?

Fintech Chatbotfor | & @
Company A Company A \.‘.Mll.n
"égp There is no extra fee for
international transfers.
Chatbot SaasS
Product
What is the fee for
@‘F’ international money transter?
Fintech Chatbot for ¢
Company B Company B w

We charge a 55 flat fee for
interpational transfers,

] University of
@ Pittsburgh

State-of-the-Art in Question Answering

100
90 PaLM 2-L (one-shot)
PaLM-540B (Few=Shot)
= 80 GLaM 62B/64EAOne-shot)
I\.I_J/ GPT-3 175B (Few-Shot)
S 70 S—Norm MemoReader
g
— 60
o
> Reading Twice for NLU
50 Mh‘emonic Reader
¢
40
30

2018 2019 2020 2021 2022 2023

Other models - Models with highest EM

h University of
w Pittsburgh

ARITHMETIC

LANGUAGE UNDERSTANDING

8 billion parameters

University of
Pn.wersll)y ° h https://ai.googleblog.com/2022/04/pathw ays-language-model-palm-scaling-to.html
ittsburg

A Brief Timeline of NLP

1950 1960

e ELIZA
* ALPAC Report and
First Al Winter

« Interest in Translation

* "Syntactic Structures"
by Chomsky

* Generative Grammars

——» 1990 -

* Language Modelling
* Word Embeddings
e Google Translate

* Statistical Models
* RNNs and LSTMs

Units=1 Prediction, = 12.1
h Label, y = 32

©, Q)
Back

Prcﬁag_atio_n -

Input=0

»
»

4———

One Atrtificial Neuron

University of
@ Pittsburgh

« Ontologies
e Expert Systems
(e.g. MYCIN)

e Case Grammars,
Semantic Networks,
and Conceptual
Dependency Theory

e GPT3 and Large
Language Models

* Word2Vec

¢ Rise of LSTMs and CNNs

¢ Encoder-Decoder

« Attention and
Transformers

¢ Pre-trained Models and
Transfer Learning

Recurrent Neural Network (RNN)

output units time 1 time 2 time 3
output units output units output units.
L) f J [\
hidden units time 1 - time 2 - time 3
hidden units | hidden units " hidden units
L 1 / \ [}
input units time 1 time 2 time 3
input units input units input units

*good for learning temporal associations
in the input or input sequences

one to one

one to many

many to one

hy W

l
‘_=Lﬂ.
3—1]

T

N

t

. h(t—l)

2D

n y2 YN
I l 1l
2) £ = Rl
— — —
I I 1
T Ty TN
e T
t t
Rt D)
o) 2D

S University of
Pittsburgh

many to many

many to many

Iy

Tt

Yt

4, = tanh(Wyphy_) + Wi x,_ 1 + 8y)

Yt = W/hokt

Long Short-Term Memory (LSTM)

* Addscell state to the RNN.
* Addsfour gatesto control the flow of information.
« Carries computation sequentially in three steps.

Ut Yt

LT Ly

SR University of
G Pittsbur gh ml-lectures.org

Long Short-Term Memory (LSTM)

! * . po
« ForgetStep: ¢, = c(Wysh,_ 1 +Wrx, +56:) O c,_ Forgets specific
! (i xS f) =1 information of the cell

state.
. Inputand Update Step: &; = tanh(Wp, 4,_ + Wi, x, + 6,) * Decide what and how

iy = c(Wyik,_1 + Wyix, + 5,) much to add to the cell

’ 40 state.
c,=2cC z £
! ! ! ! * Decide how much of

. - h=cWih +W. + 5 tanh the information stored
Output Step: ! (Who t-1 xo%t ") © (cr) in the cell state should
Yt be written to the new
ForgetGate hidden state.
Ct-1

P

Input Gate Output Gate

S Unlversuy of
PlttSbllI' gh mi-lectures.org

Text Data Processing

Standardization refers to preprocessing the text, typically to remove

punctuation or HTML elements to simplify the dataset.

Tokenization refers to splitting strings into tokens (for example, splitting a
sentence into individual words by splitting on whitespace).

*Vectorization refers to converting tokens into numbers so they can be fed into a
neural network.

Textual data is usually preprocessed using the following 5 tasks:

1.

aoR W N

Standardize each example (usually lowercasing + punctuation
stripping)

Split each example into substrings (usually words)

Recombine substrings into tokens (usually ngrams)

Index tokens (associate a unique int value with each token)

Transform each example using this index into a vector of ints or a
dense float vector.

University of

Pittsburgh

Original Sentence:
Yes it was a little low budget, but this movie shows love!

Standardization:
yes it was a little low budget but this movie shows love

Tokenization:
[yes, it, was, a, little, low, budget, but, this, movie, shows, love]

Vectorization:
[414 9 10 192 20 25 200 200 250 300 0 00 0 ..]

S University of
Pittsburgh

Subword Tokenizers

Original Sentence:
but they did n't test for curiosity .

Tokenization:
[b'[START], b'but', b'they', b'did’, b'n’, b™", b't', b'test’, b'for', b'curiosity', b'.", b'[ENDT]]

Vectorization:
[2,87,83,149,50,9, 56,664,85,2512,15, 3]

* Skipped standardization step in this example.

S Un.iversity of
Pittsburgh

Typical DL Pipeline

Step 1 Step 2 Step 3 Step 4 Step 5
Load and Design the Train the
Data) Evaluate the
Preprocess Visualization » Deep Learning Model Model
Data Model Define
Deep Learning Training Process
. ot - - Weights are randomly initialized at the beginning.
eot Wi yorown tex esue - Weknow the actual labels (supervised).
o 1. Inputdata -> Batch of data.
1 2. Wefind the predictions.
3. We pass the predictions to the optimizer (the
optimizer already knows the actual labels.)
4. Wefind the loss between predicted labels and
You can try this service from here: actual labels.
5. Wetune the “learnable” parameters according to

the loss.
6. Go backto step 1.

S Un.iversity of
Pittsburgh

https://monkeylearn.com/sentiment-analysis-online/
https://monkeylearn.com/sentiment-analysis-online/

Input sentence label

Yes it was a little low budget, but this movie shows love! 1

Vocabulary (** 1000 words) — VOCAB SIZE

[414 9 10 192 20 25 200 200 250 300 0 00O ..]

52 Un.iversityof
w Pittsburgh

/ Vocabulary

array(['', '[UNK]', 'the', 'and', 'a', 'of', 'to', 'is', 'in', 'it', 'i‘',
'this', 'that', 'br', 'was', 'as', 'for', 'with', 'movie', 'but'],
dtype="'<U14")

Encoded sentence
array([[10, 540, 4, ..., 0, 0, 0], /

[10, 120, 11, ..., 0, 0, 0],
(414, 9, 14, ..., 0, 0, 0]1)

* UNK token for unknown words that didn't fit in the set vocabulary size.
* Multiple words represented by same vector encoding.

S University of
@ Pittsburgh

(o

oJjofi tanh o

University of

Pittsburgh

outputs

backward
layer LSTM

A

forward __| LSTM
layer

inputs Xt

Bidirectional LSTM

LSTM

LSTM — -

h

Xt+1

That was a great movie Input

5 8 3 120 35 TextVectorization

El5] | E[B] | E[B] | E[120] | E[35] Embedding ‘ ” Parameter

)\)\)\)\)\ or “trainable”

i ' i i v Bidirectional Learnable Parameter
IEETE

64 Dense Learnable Parameter

0/1 Classification L€arnable Parameter

S Un.iversity of
Pittsburgh

That was a great movie Input

5 8 3 120 35 TextVectorization

EIS] | EB] | EB] | E[120] | E[35] Embedding
1x64] [........ I O I || I

Bidirectional \
Tuneall trainable parameters

Optimizer - Adam

Prediction

0 - 90% -> loss s high -> tune parameters
1 - 50% -> tune parameters again
1-90% -> ok, stop.

64 Dense

0/1 Classification

LOSS Fn

Minimize
GOAL

» Cross
e University of Entro
Pittsburgh 1 Output Labels i

English - detected Portuguese

Hi, my name is Ola, meu nome é
Arun Arun

Complex!
May not have an exact match for phrases or words.
Grammar/humor/context + cultural differences.

S Un.iversity of
Pittsburgh

Transformers

» Transformers are parallelizable.

» Transformers can capture distant or

long-range contexts and
dependencies.

» Transformers make no assumptions

about the temporal/spatial

relationships across the data.

University of

Pittsburgh

Add & Norm

Nx Add & Horm

Multi-Head
Attention

Add & Norm

Add & Norm

Output
Probabilities

Multi-Head
Attention

Masked
Mutti-Head
Attention

LY)

Nx

J

Positional
Encoding

Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)

Positional
Encoding

Attention Is All You Need

Ashish Vaswani® Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswaniGgoogle.com noamgoogle.com nikip@google.com uszOgoogle.com

Liion Jones® Aidan N. Gomez® ! Lukasz Kaiser*
Google Rescarch University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin® *
i1lia.polosukhinOgmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,

based solely on attention mecha with and ¢
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more and requiring i

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BL On the WMT 2014 English-to-French translation task,
our model a new single del s f-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7) neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
transduction problems such as language modeling and machine translation [29, 2, 5]. Numerous
efforts have since continued to push the boundaries of recurrent language models and encoder-decoder
architectures [31,21,(13).

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with llia, designed and implemented the first Transformer models and
has been erucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

Work performed while at Google Brain.

+Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Portuguese
mas eles ndo tinham a curiosidade de me testar.

English

but they did n't test for curiosity .
[2, 87, 83, 149, 50, 9, 56, 664, 85, 2512, 15, 3]

[b'[START]', b'but', b'they', b'did', b'n', b"'", b't', b'test', b'for',

b'curiosity',

> Subwords: the word 'searchability’ is decomposed into 'search’ and '##ability', and the

word 'serendipity’ into's’, '##ere’, '##nd’, '##ip'and '##Hity'.

University of

Pittsburgh

b'.

14

Maximum tokens per example: 320

b'[END]’]

20000

15000 +

10000 4

5000

T
100

T
200

T
300

T
400

T
500

Encoder

Qutput
Probabilities
@TE
| Linear |
g ™\
Add & Norm
Feed
Forward
—
s \ Add & Norm
_ -
relal o i Multi-Head
Feed Attention
Forward T} M
—
N Add & Norm
| ::Add & Nom Masked
Multi-Head Multi-Head
Attention Attention
it At 4
L y, . —
Positional Positional
Encodi 'a E‘ .
ncoding Encoding
Input Qutput
Embedding Embedding
! !
|
Inputs Outputs
{shifted right)
e o] University of

Pittsburgh

Decoder

Qutput
Probabilities

Softmax

Linear

Add & Norm
Feed
Forward
s \ Add & Norm
_ .
srelal b i Multi-Head
Feed Attention
Forward J) M=
—
N Add & Norm
| ;.—]Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At _t 4
-~ I
\. J J
Positional Positional
Encodi '9 E‘ .
ncoding Encoding
Input Output
Embedding Embedding
1 1
I
Inputs Outputs

(shifted right)

* Generates the text one token at a Labels

time and feeds the output back to the
input — Autoregressive model. €| * Inputs and Labels
[} .
i c 3|2 are shifted by 1.
—| & o| B |H
A A A A A
e | | = I T 1 11
v]\ — * Lets the decoder
Attertion . .
': — N 2 access the information
v |) | | R > S extracted by the encoder.
‘ i et i htenton =
T 7 tA" t 7 > <
\) = » *Itcomputes a vector
Pt)s:\rf:lrml @—G- -~ Posmolma\ . (7)) .
Enceding L L Encoding o o from the entll‘e (6{0) nteXt
II | IEmded'"g > O sequence, and adds that
it Ouputs T 1 1] to the decoder’s output.
[shifted right)
Global Self-Attention Causal Self-Attention
N .

Responsible for * Makes sure output for
processing the context . F & & & 1 L &+ 4 & % eachsequenceelement
sequence, and propagating dependsonthe previous
information along its = € = | sequenceelements.

X © | = ' 5
length. < 50 < 3
= g 3|Z = = S
NDiolan|lo|lW Di_|c| ol|®

3 Un.iversity of
Pittsburgh Inputs

Positional Encoding

Add & Norm

Add & Norm VE
Multi-Head Multi-Head
Attention Attention
[} 1

University of

Pittsburgh

Positional @_@ Positional
Encoding ¢ Encoding
Input Qutput
Embedding Embedding
[} [}
| |
Inputs Outputs
(shifted right)

* A stack of sines and cosines that vibrate at
different frequencies depending on their
location along the depth of the embedding
vector.

* The attention layers see their input as a set
of vectors, with no order.

*So, we add a positional encoding to the
embeddings to force near-by elements to have
similar positional encodings.

4-layer Transformer

1-layer Transformer

S N N S

’_.I\II\
[T
EnEnlREEEE

RNN+Attention

S Un.iversity of
Pittsburgh

B &
T oae g _ 3 T ue g =]

: o m : m
m.E:gmmu - B~ m.E:gm & oo
_::1:21__:4:11; ®T 5 = _::EE,_: i T 5
 @m T O = W oo = =2 = m T O = s = =

5: g
o = =W i
2 T g & 2z o T g

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a

Transformer trained on English-to-French translation (one of eight attention heads).
Source: Google Al Blog.

University of

Pittsburgh

wide

wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Code

S University of
@ Pittsburgh

Step 1: Load and Preprocess Data

VOCAB_SIZE = 1000
encoder = tf.keras.layers.TextVectorization(
max tokens=VOCAB_SIZE)
encoder.adapt(train dataset.map(lambda text, label: text))
vocab = np.array(encoder.get vocabulary())
vocab[:20]

array(['', '[UNK]', 'the', 'and', 'a', 'of', 'to', 'is', 'in', 'it', 'i‘',

'this', 'that', 'br', 'was', 'as', 'for', 'with', 'movie', 'but'],
dtype="'<U1l4")

encoded example = encoder(example)[:3].numpy()
encoded_example

array([[10, 540, 4, ..., 0, 0, 01,

[10, 120, 11, ..., O, 0, O],
(414, 9, 14, ..., 0, 0, 011)

S Un.iversity of
Pittsburgh

Step 2: Visualize the dataset

[33] 1 num words = 15

2 words_in the sentence = str(example[n].numpy()).split(' ')[:num words]
3 encodeded_id_of the words = encoded_example[n][:num words]
4
5 print("Encoding\tWord")
6 for word, encoded_id in zip(words_in the_ sentence, encodeded_id_of the words):
7 print(encoded id, "\t\t", word)

Encoding Word

10 b'I

86 first

1 encountered 1000 VOCAB SIZE

11 this

120 show Word Count or Bag of Words

51 when

10 I

14 was

1 staying

8 in

1 Japan

16 for

1 six

1 months

226 last

Un. iversity of
Pittsburgh

Step 3: Design the NLP Model

That was a great movie Input
P
5 8 & 120 35 TextVectorization
I

El5] E[8] E[3] | E[20] | E[35] Embedding

i i i i i Bidirectional

Dense

Classification

3 Un. iversity of
Pittsburgh

model = tf.keras.Sequential([

encoder,
tf.keras.layers.Embedding(
input_dim=len(encoder.get_vocabulary()),
output_dim=64,
Use masking to handle the variable sequence lengths
mask zero=True),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1l)

n

The output of the Bidirectional LSTMis passedto a
Dense layer with 64 nodes, and then further passed to
the output layer for final binary classification.

2"dword is processed based on the embedding at 2"
location in the sentence as well as the output of the first
word.

3 word is processed based onthe embedding atthe 3™
loc in the sentence as well as the output of the second

word.

Word2Vec — Package by Google to create Embeddings.

Long Short-Term Memory (LSTM) Module
Al >

y

| softmax |

-

(- N
<t>
»() O >
c<r—l>
<—1>
| forget | | update | ‘ tanh | l output J <t>
S S, S,
\ LSTI\."-aa-IIJ
x<> T T
outputs
A
backward
layer LSTM LSTM
forward LSTM LSTM
layer
University of .
Pittsburgh inputs Xt Xt

Xt+'|

Bidirectional LSTM

LSTM

Step 4: Train the NLP Model

model.compile(loss=tf.keras.losses.BinaryCrossentropy(from logits=True),
optimizer=tf.keras.optimizers.Adam(le-4),
metrics=['accuracy'])

Once we have defined the model, now we can compile the model with the loss and
optimizer functions just like we did for the DNN and CNN examples last week. We can
then fit the model on the train dataset to train the embedding layer, RNN, and dense
layers. Note that the RNN layer has multiple layers inside which enables the temporal or
sequential nature of learning. The overall parameters of the model is thus dependent on
the embedding size, number and size of RNN layers, and the number and size of dense
layers.

history = model.fit(train dataset, epochs=5)

S Un.iversity of
Pittsburgh

Step 5: Evaluate the Trained Model

test loss, test acc = model.evaluate(test dataset)

print('Test Loss:', test loss)
print('Test Accuracy:', test acc)

We can run evaluate method on the model to find the test loss and accuracy.

Now, given a new input, we can understand if a movie review is positive or negative.

Question: This is a fantastic movie.

Predicted label: Positive

Question: This is a bad movie.

Predicted label: Negative

Question: This movie was so bad that it was good.
Predicted label: ©Negative

Question: I will never say yes to watching this movie.
Predicted label: Negative

Question: Skip this movie.

Predicted label: Negative

Question: Don't waste your time.

Predicted label: Negative

We can now experiment by adding multiple RNN layers to the network and trying out
different types of RNN layers.

University of

Pittsburgh

	Slide 1: Lecture 3 – Introduction to Natural Language Processing
	Slide 2: Evolution of Natural Language Processing (NLP)
	Slide 3
	Slide 4: Heavy Investments!
	Slide 5
	Slide 6: State-of-the-Art in Question Answering
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Long Short-Term Memory (LSTM)
	Slide 11: Long Short-Term Memory (LSTM)
	Slide 12: Text Data Processing
	Slide 13
	Slide 14: Subword Tokenizers
	Slide 15: Typical DL Pipeline
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Transformers
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Code
	Slide 30: Step 1: Load and Preprocess Data
	Slide 31: Step 2: Visualize the dataset
	Slide 32: Step 3: Design the NLP Model
	Slide 33
	Slide 34: Step 4: Train the NLP Model
	Slide 35: Step 5: Evaluate the Trained Model

